计算机科学
卷积神经网络
人工智能
断层(地质)
钥匙(锁)
特征(语言学)
核能
深度学习
软件
模式识别(心理学)
机器学习
地质学
哲学
地震学
生物
程序设计语言
语言学
计算机安全
生态学
作者
Changan Ren,Lijun He,Jichong Lei,Jie Liu,Wei Li,K. Y. Gao,Gan Huang,Xiaohua Yang,Tao Yu
标识
DOI:10.1080/00295450.2023.2199098
摘要
With the advancement of artificial intelligence technology, intelligent diagnostic technology has been gradually implemented across various industries. This study proposes the use of convolutional neural networks–long short-term memory (CNNs-LSTM) for diagnosing faults in CPR1000 nuclear power plants (NPPs). To automatically extract data related to different types and levels of faults in the PCTRAN program, the study utilizes a self-developed AutoPCTRAN software and selects several key nuclear parameters as feature quantities. The study uses random sampling to create the training, validation, and test sets in an 8:1:1 ratio and identifies acceptable parameters to build the CNN-LSTM model. Test results show that the CNN-LSTM–based model for diagnosing CPR1000 NPP faults achieves a problem recognition rate of 99.6%, which validates the efficacy of the CNN-LSTM–based nuclear power fault diagnosis model.
科研通智能强力驱动
Strongly Powered by AbleSci AI