Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential

误传 医学物理学 医学 放射科 医疗保健 肺癌筛查 普通英语 计算机断层摄影术 点(几何) 磁共振成像 质量(理念) 计算机科学 语言学 哲学 几何学 计算机安全 数学 认识论 经济 经济增长
作者
Qing Lyu,Josh Tan,Michael E. Zapadka,Janardhana Ponnatapura,Chuang Niu,Kyle J. Myers,Ge Wang,Christopher T. Whitlow
出处
期刊:Visual Computing for Industry, Biomedicine, and Art [Springer Nature]
卷期号:6 (1) 被引量:174
标识
DOI:10.1186/s42492-023-00136-5
摘要

Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人完成签到,获得积分10
刚刚
OK不服气完成签到,获得积分10
1秒前
科研通AI5应助yaoguozhikkk采纳,获得10
1秒前
nnnnn完成签到 ,获得积分10
1秒前
1秒前
2秒前
HW完成签到,获得积分20
2秒前
nozero应助Wanfeng采纳,获得100
2秒前
呵呵呵发布了新的文献求助10
2秒前
十三完成签到 ,获得积分10
3秒前
文静完成签到,获得积分10
3秒前
3秒前
东西南北完成签到,获得积分10
4秒前
小高完成签到,获得积分10
5秒前
闪闪落雁完成签到,获得积分10
5秒前
YuGe发布了新的文献求助10
5秒前
布朗尼发布了新的文献求助10
6秒前
情怀应助午夜小菜鸟采纳,获得10
6秒前
HW发布了新的文献求助10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
CH应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
Russula_Chu应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Russula_Chu应助科研通管家采纳,获得10
7秒前
王涛发布了新的文献求助10
7秒前
土豪的钻石完成签到,获得积分10
7秒前
JunJun完成签到 ,获得积分10
7秒前
haimianbaobao完成签到 ,获得积分10
7秒前
Lynn发布了新的文献求助10
9秒前
滕擎完成签到,获得积分20
9秒前
研友_Z119gZ完成签到 ,获得积分10
9秒前
KOBE94FU完成签到,获得积分10
9秒前
梓梓梓城完成签到,获得积分10
9秒前
zxp完成签到,获得积分10
10秒前
小马甲应助木冉采纳,获得10
11秒前
11秒前
ys发布了新的文献求助10
11秒前
开朗寇完成签到,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173