In silico modeling of endocrine organ-on-a-chip systems

生物信息学 计算机科学 芯片上器官 内分泌系统 计算生物学 神经科学 激素 生物 微流控 纳米技术 生物化学 基因 材料科学
作者
Baeckkyoung Sung
出处
期刊:Mathematical biosciences [Elsevier]
卷期号:352: 108900-108900 被引量:3
标识
DOI:10.1016/j.mbs.2022.108900
摘要

The organ-on-a-chip (OoC) is an artificially reconstructed microphysiological system that is implemented using tissue mimics integrated into miniaturized perfusion devices. OoCs emulate dynamic and physiologically relevant features of the body, which are not available in standard in vitro methods. Furthermore, OoCs provide highly sophisticated multi-organ connectivity and biomechanical cues based on microfluidic platforms. Consequently, they are often considered ideal in vitro systems for mimicking self-regulating biophysical and biochemical networks in vivo where multiple tissues and organs crosstalk through the blood flow, similar to the human endocrine system. Therefore, OoCs have been extensively applied to simulate complex hormone dynamics and endocrine signaling pathways in a mechanistic and fully controlled manner. Mathematical and computational modeling approaches are critical for quantitatively analyzing an OoC and predicting its complex responses. In this review article, recently developed in silico modeling concepts of endocrine OoC systems are summarized, including the mathematical models of tissue-level transport phenomena, microscale fluid dynamics, distant hormone signaling, and heterogeneous cell-cell communication. From this background, whole chip-level analytic approaches in pharmacokinetics and pharmacodynamics will be described with a focus on the spatial and temporal behaviors of absorption, distribution, metabolism, and excretion in endocrine biochips. Finally, quantitative design frameworks for endocrine OoCs are reviewed with respect to support parameter calibration/scaling and enable predictive in vitro-in vivo extrapolations. In particular, we highlight the analytical and numerical modeling strategies of the nonlinear phenomena in endocrine systems on-chip, which are of particular importance in drug screening and environmental health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏侯夏侯发布了新的文献求助10
1秒前
英俊钢铁侠完成签到,获得积分10
2秒前
充电宝应助cmh采纳,获得30
2秒前
3秒前
4秒前
小呆完成签到,获得积分20
4秒前
6秒前
7秒前
7秒前
边城小子完成签到,获得积分10
9秒前
义气的罡发布了新的文献求助10
9秒前
温药专完成签到,获得积分10
10秒前
11秒前
123发布了新的文献求助10
11秒前
11秒前
ccm应助白张一个脑袋采纳,获得10
13秒前
14秒前
15秒前
香蕉觅云应助甜蜜的代容采纳,获得10
16秒前
17秒前
17秒前
Young完成签到,获得积分10
18秒前
123发布了新的文献求助10
19秒前
Tonson发布了新的文献求助10
19秒前
慕青应助高等数学采纳,获得10
20秒前
21秒前
23秒前
dkyt完成签到,获得积分10
23秒前
迷人的冥完成签到,获得积分10
23秒前
Maestro_S应助123采纳,获得10
25秒前
天注定发布了新的文献求助10
27秒前
28秒前
韩帅发布了新的文献求助10
28秒前
29秒前
Janvenns发布了新的文献求助10
30秒前
30秒前
31秒前
32秒前
www发布了新的文献求助10
33秒前
33秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2482292
求助须知:如何正确求助?哪些是违规求助? 2144695
关于积分的说明 5470862
捐赠科研通 1867118
什么是DOI,文献DOI怎么找? 928103
版权声明 563071
科研通“疑难数据库(出版商)”最低求助积分说明 496509