An improved transformer network for skin cancer classification

计算机科学 卷积神经网络 人工智能 变压器 皮肤癌 深度学习 模式识别(心理学) 编码 人工神经网络 机器学习 癌症 医学 基因 量子力学 物理 内科学 生物化学 电压 化学
作者
Chao Xin,Zhifang Liu,Ke Zhao,Linlin Miao,Yizhao Ma,Xiaoxia Zhu,Qiongyan Zhou,Songting Wang,Lingzhi Li,Feng Yang,Suling Xu,Haijiang Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105939-105939 被引量:63
标识
DOI:10.1016/j.compbiomed.2022.105939
摘要

Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts.As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed.To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible.The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans.The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emily完成签到,获得积分10
刚刚
pompous完成签到 ,获得积分10
3秒前
华仔应助juneJ采纳,获得10
4秒前
wlqc完成签到,获得积分10
5秒前
7秒前
juneJ发布了新的文献求助10
12秒前
彳亍完成签到 ,获得积分10
13秒前
星辰大海应助石文采纳,获得10
17秒前
22秒前
易甜甜甜发布了新的文献求助10
23秒前
咯噔完成签到,获得积分10
25秒前
石文发布了新的文献求助10
28秒前
胡芜湖完成签到,获得积分10
32秒前
33秒前
Jameson完成签到,获得积分10
34秒前
苟活着完成签到,获得积分10
34秒前
海与发布了新的文献求助10
42秒前
lxlcx应助。。。采纳,获得20
44秒前
我是老大应助科研通管家采纳,获得10
50秒前
NexusExplorer应助科研通管家采纳,获得10
50秒前
英姑应助科研通管家采纳,获得30
50秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
英俊的铭应助科研通管家采纳,获得20
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
51秒前
隐形曼青应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
许甜甜鸭应助科研通管家采纳,获得20
51秒前
51秒前
51秒前
FashionBoy应助清爽的非笑采纳,获得10
51秒前
菜菜救命完成签到,获得积分10
52秒前
NexusExplorer应助隐形的邦布采纳,获得10
53秒前
58秒前
58秒前
1分钟前
星辰大海应助liudijingling采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386184
关于积分的说明 10544072
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711228
邀请新用户注册赠送积分活动 824010
科研通“疑难数据库(出版商)”最低求助积分说明 774409