Improving the accuracy of multi-step prediction of building energy consumption based on EEMD-PSO-Informer and long-time series

粒子群优化 希尔伯特-黄变换 能源消耗 计算机科学 时间序列 消费(社会学) 系列(地层学) 能量(信号处理) 模式(计算机接口) 非线性系统 数据挖掘 人工智能 数学优化 算法 工程类 机器学习 数学 统计 古生物学 社会科学 社会学 电气工程 生物 操作系统 量子力学 物理
作者
Feiyu Li,Zhibo Wan,Thomas Koch,Guokuan Zan,Mengjiao Li,Zhonghai Zheng,Bo Liang
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:110: 108845-108845 被引量:46
标识
DOI:10.1016/j.compeleceng.2023.108845
摘要

Accurate multi-step forecasting of building energy consumption is an essential tool for effective planning and plays a vital role in building energy management systems. With the advent of big data, many artificial intelligence techniques require long time series to predict multi-step energy consumption. However, energy consumption data of buildings are often nonlinear and non-stationary in the state as well as considerable period, making model prediction more difficult. In this research, we propose a hybrid algorithm that combines the ensemble empirical modal decomposition (EEMD) and informer, where the parameters of the informer are optimized by the particle swarm optimization algorithm (PSO). At the beginning of our improved method, we use EEMD to break down the raw data into several intrinsic mode functions(IMF) components. Informer is then used to make predictions, and PSO is used to tune hyper-parameters during prediction. In the final step, the final prediction result is obtained by combining the prediction results of all IMF components. The hourly electricity consumption of five buildings in the BDG2 dataset is used to evaluate the effectiveness of the proposed method. Five existing models are compared with this method and evaluated by different performance metrics. From the perspective of five cases, the accuracy rate has increased by up to 78.68% compared with the existing methods. Compared with the original model, the accuracy rate has increased by up to 56.11%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨蛋搞笑女完成签到 ,获得积分10
1秒前
xiaolan完成签到,获得积分10
2秒前
Fury完成签到 ,获得积分10
3秒前
3秒前
hahasail完成签到,获得积分20
4秒前
丘比特应助wwwwwnnnnn采纳,获得30
4秒前
今后应助落后的代芙采纳,获得10
4秒前
莫小乖完成签到 ,获得积分10
6秒前
tutu车完成签到,获得积分10
7秒前
7秒前
lixiaolu完成签到 ,获得积分10
8秒前
Herrr关注了科研通微信公众号
8秒前
冷酷凝梦发布了新的文献求助10
9秒前
欣喜柚子完成签到 ,获得积分10
10秒前
Owen应助ck采纳,获得10
11秒前
林泽菲完成签到,获得积分10
11秒前
纪云海完成签到,获得积分10
11秒前
细心雨安完成签到,获得积分10
11秒前
Juli完成签到,获得积分10
11秒前
半斤完成签到 ,获得积分10
11秒前
跃天杜发布了新的文献求助10
13秒前
14秒前
搜集达人应助haha采纳,获得10
15秒前
心灵美的白易完成签到,获得积分10
15秒前
大模型应助果断统统白给采纳,获得10
16秒前
董小婷完成签到,获得积分10
16秒前
airport完成签到,获得积分10
16秒前
小不溜完成签到,获得积分10
17秒前
HH完成签到,获得积分10
18秒前
18秒前
小杭76应助灵巧嫣娆采纳,获得10
19秒前
OSASACB完成签到 ,获得积分10
20秒前
跃天杜完成签到,获得积分10
21秒前
CipherSage应助HH采纳,获得10
22秒前
英勇笑萍完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
lhh发布了新的文献求助10
24秒前
wyz完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169