清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CVMIDS: Cloud–Vehicle Collaborative Intrusion Detection System for Internet of Vehicles

计算机科学 入侵检测系统 云计算 互联网 计算机安全 入侵防御系统 计算机网络 万维网 操作系统
作者
Junman Qin,Yijie Xun,Jiajia Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 321-332 被引量:16
标识
DOI:10.1109/jiot.2023.3318181
摘要

As the evolution of 3GPP specification and the deployment of 5G network, Internet of Vehicles (IoVs) boom fireworks. However, its attack surface is expanded with the increased fusion of various functional interfaces, leading to easier penetration of vehicles. To deal with endless vehicle attacks, scholars propose many methods, where intrusion detection system (IDS) is an important branch. However, many IDSs are based on characteristics of single or specific types of vehicles, which limits model transplantation. Besides, 1-D features are usually utilized in existing IDSs, such as time, traffic, or voltage, etc., limiting the ability to detect attacks related to other dimensions. What is more, many IDSs harness machine learning algorithms and are deployed in vehicles simultaneously, which aggravates the computational burden. Therefore, we devise a cloud-vehicle collaborative IDS based on multidimensional features (CVMIDS) for IoV, called CVMIDS. It solves the problem of data heterogeneity by abstracting different vehicle data to the same feature space. Thus, data sets from different vehicles can be fed into one model for multiclassification, which naturally solves the problem of model transplantation. The feature space is established by combining features in dimensions of time, traffic, and voltage, thereby extending the types of attacks that CVMIDS can detect. Due to the deviated location of abnormal data in feature space compared with normal data, CVMIDS will misclassify vehicle data. Hence, CVMIDS can detect intrusions based on multiclassifying vehicles. Extensive experiments are conducted on three vehicles with different brands and numerical results corroborate the robustness and efficiency of CVMIDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilaccalla完成签到 ,获得积分10
2秒前
gwbk完成签到,获得积分10
12秒前
蝎子莱莱xth完成签到,获得积分10
22秒前
管靖易完成签到 ,获得积分10
28秒前
氢锂钠钾铷铯钫完成签到,获得积分10
28秒前
Ava应助定西采纳,获得10
34秒前
Square完成签到,获得积分10
34秒前
mendicant完成签到,获得积分10
49秒前
yuchao_0110完成签到,获得积分10
49秒前
zyjsunye完成签到 ,获得积分0
1分钟前
通科研完成签到 ,获得积分10
1分钟前
jiangjiang完成签到 ,获得积分10
1分钟前
Sunsheng应助科研通管家采纳,获得30
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
周周完成签到 ,获得积分10
1分钟前
小土豆完成签到 ,获得积分10
2分钟前
lihuiying5aini完成签到,获得积分10
2分钟前
Dong完成签到 ,获得积分10
2分钟前
2分钟前
earthai完成签到,获得积分10
2分钟前
2分钟前
自然之水完成签到,获得积分10
2分钟前
Arthur完成签到 ,获得积分10
2分钟前
Grace0621发布了新的文献求助20
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
芝麻汤圆完成签到,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
葫芦芦芦完成签到 ,获得积分10
3分钟前
zz完成签到 ,获得积分10
3分钟前
噼里啪啦完成签到,获得积分10
3分钟前
3分钟前
qinghong发布了新的文献求助10
3分钟前
cdercder应助科研通管家采纳,获得20
3分钟前
Sunsheng应助科研通管家采纳,获得10
3分钟前
海洋岩土12138完成签到 ,获得积分10
3分钟前
胡国伦完成签到 ,获得积分10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837565
求助须知:如何正确求助?哪些是违规求助? 3379667
关于积分的说明 10510096
捐赠科研通 3099269
什么是DOI,文献DOI怎么找? 1707021
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615