Rethink the Top-u Attention in Sparse Self-attention for Long Sequence Time-Series Forecasting

计算机科学 系列(地层学) 二次方程 计算 职位(财务) 人工智能 序列(生物学) 透视图(图形) 算法 数学 古生物学 遗传学 几何学 财务 经济 生物
作者
Xiangxu Meng,Wei Li,Tarek Gaber,Zheng Zhang,Chuhao Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 256-267
标识
DOI:10.1007/978-3-031-44223-0_21
摘要

Long time-series forecasting plays a crucial role in production and daily life, covering various areas such as electric power loads, stock trends and road traffic. Attention-based models have achieved significant performance advantages based on the long-term modelling capabilities of self-attention. However, regarding the criticized quadratic time complexity of the self-attention mechanism, most subsequent work has attempted to improve on it from the perspective of the sparse distribution of attention. In the main line of these works, we further investigate the position distribution of Top-u attention in the long-tail distribution of sparse attention and propose a two-stage self-attention mechanism, named $$\textsf{ProphetAttention}$$ . Specifically, in the training phase, $$\textsf{ProphetAttention}$$ memorizes the position of Top-u attention, and in the prediction phase, it uses the recorded position indices of Top-u attention to directly obtain Top-u attention for sparse attention computation, thereby avoiding the redundant computation of measuring Top-u attention. Results on four widely used real-world datasets demonstrate that $$\textsf{ProphetAttention}$$ improves the prediction efficiency of long sequence time-series compared to the $$\textsf{Informer}$$ model by approximately 17%–26% across all prediction horizons and significantly promotes prediction speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助芭娜55采纳,获得10
刚刚
在水一方应助豆豆采纳,获得10
1秒前
ly完成签到,获得积分10
5秒前
qwertnjj完成签到,获得积分10
5秒前
xiaoblue发布了新的文献求助10
5秒前
wanci应助叶子采纳,获得10
5秒前
6秒前
6秒前
音游完成签到,获得积分10
6秒前
6秒前
7秒前
时光完成签到,获得积分10
8秒前
10秒前
10秒前
笙笙完成签到,获得积分20
10秒前
慕青应助xiaomili采纳,获得10
12秒前
FashionBoy应助Jane采纳,获得10
13秒前
包子发布了新的文献求助10
13秒前
13秒前
所所应助音游采纳,获得10
14秒前
15秒前
17秒前
chayue发布了新的文献求助10
19秒前
JJbond完成签到 ,获得积分10
19秒前
19秒前
ylky完成签到 ,获得积分10
19秒前
123发布了新的文献求助10
21秒前
21秒前
21秒前
ZZZ完成签到,获得积分20
23秒前
幸福的杨小夕完成签到,获得积分20
24秒前
24秒前
blank12完成签到,获得积分10
24秒前
Jane发布了新的文献求助10
24秒前
25秒前
旷野发布了新的文献求助10
26秒前
FashionBoy应助chayue采纳,获得10
26秒前
阿松发布了新的文献求助10
27秒前
28秒前
cuijiawen完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810566
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374127
捐赠科研通 3071648
什么是DOI,文献DOI怎么找? 1687051
邀请新用户注册赠送积分活动 811395
科研通“疑难数据库(出版商)”最低求助积分说明 766639