In Silico Design and Analysis of Plastic-Binding Peptides

范德瓦尔斯力 分子动力学 合理设计 组合化学 材料科学 化学 生物信息学 纳米技术 计算化学 分子 有机化学 生物化学 基因
作者
Michael Bergman,Xingqing Xiao,Carol K. Hall
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (39): 8370-8381 被引量:1
标识
DOI:10.1021/acs.jpcb.3c04319
摘要

Peptides that bind to inorganic materials can be used to functionalize surfaces, control crystallization, or assist in interfacial self-assembly. In the past, inorganic-binding peptides have been found predominantly through peptide library screening. While this method has successfully identified peptides that bind to a variety of materials, an alternative design approach that can intelligently search for peptides and provide physical insight for peptide affinity would be desirable. In this work, we develop a computational, physics-based approach to design inorganic-binding peptides, focusing on peptides that bind to the common plastics polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate). The PepBD algorithm, a Monte Carlo method that samples peptide sequence and conformational space, was modified to include simulated annealing, relax hydration constraints, and an ensemble of conformations to initiate design. These modifications led to the discovery of peptides with significantly better scores compared to those obtained using the original PepBD. PepBD scores were found to improve with increasing van der Waals interactions, although strengthening the intermolecular van der Waals interactions comes at the cost of introducing unfavorable electrostatic interactions. The best designs are enriched in amino acids with bulky side chains and possess hydrophobic and hydrophilic patches whose location depends on the adsorbed conformation. Future work will evaluate the top peptide designs in molecular dynamics simulations and experiment, enabling their application in microplastic pollution remediation and plastic-based biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大猫完成签到,获得积分10
2秒前
4秒前
4秒前
7秒前
ho应助科研通管家采纳,获得10
9秒前
老福贵儿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
VDC应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
老福贵儿应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
老福贵儿应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
Criminology34应助石头采纳,获得10
14秒前
武子阳完成签到 ,获得积分10
14秒前
邢夏之完成签到 ,获得积分10
14秒前
OE完成签到,获得积分10
14秒前
泯珉发布了新的文献求助10
14秒前
14秒前
15秒前
Csy完成签到,获得积分10
17秒前
17秒前
18秒前
英吉利25发布了新的文献求助10
21秒前
拾肆发布了新的文献求助10
21秒前
希望天下0贩的0应助泯珉采纳,获得10
22秒前
jiyang完成签到,获得积分10
23秒前
SONG发布了新的文献求助10
25秒前
中元完成签到 ,获得积分0
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295962
求助须知:如何正确求助?哪些是违规求助? 4445317
关于积分的说明 13835911
捐赠科研通 4329946
什么是DOI,文献DOI怎么找? 2376831
邀请新用户注册赠送积分活动 1372199
关于科研通互助平台的介绍 1337534