Cooperative Deep-Learning Positioning in mmWave 5G-Advanced Networks

计算机科学 非视线传播 基站 实时计算 钥匙(锁) 深度学习 人工智能 频道(广播) 蜂窝网络 模拟 无线 电信 计算机安全
作者
Bernardo Camajori Tedeschini,Monica Nicoli
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3799-3815 被引量:14
标识
DOI:10.1109/jsac.2023.3322795
摘要

In application verticals that rely on mission-critical control, such as cooperative intelligent transport systems (C-ITS), 5G-Advanced networks must be able to provide dynamic positioning with accuracy down to the centimeter level. To achieve this level of precision, technology enablers, such as massive multiple-input multiple-output (mMIMO), millimeter waves (mmWave), machine learning and cooperation are of paramount importance. In this paper, we propose a cooperative deep learning (DL)-based positioning methodology that combines these key technologies into a new promising solution for precise 5G positioning. Sparse channel impulse response (CIR) data are used by the positioning infrastructure to extract position-dependent features. We model the problem as a joint task composed of non-line-of-sight (NLOS) identification and position estimation which permits to suitably handle geometrical location measurements and channel fingerprints. The network of base stations (BSs) automatically steers between egocentric (in case of NLOS) and cooperative (for LOS) positioning mode. We perform extensive standard-compliant simulations in a 5G urban micro (UMi) vehicular scenario obtained by ray-tracing and simulation of urban mobility (SUMO) software. Results show that the proposed cooperative DL architecture is able to outperform conventional geometrical positioning algorithms operating in LOS by 47%, achieving a median error of 71 cm on unseen trajectories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪雪雪碧发布了新的文献求助10
刚刚
拓小八完成签到,获得积分10
1秒前
VVhahaha发布了新的文献求助10
1秒前
2秒前
尔尔发布了新的文献求助10
2秒前
111发布了新的文献求助10
2秒前
卿卿发布了新的文献求助10
3秒前
wanci应助诺796采纳,获得10
4秒前
Akim应助skywet采纳,获得10
4秒前
桐桐应助琼0217采纳,获得10
4秒前
5秒前
5秒前
烟花应助俎树同采纳,获得10
6秒前
打打应助小巧的铅笔采纳,获得10
6秒前
6秒前
包子发布了新的文献求助20
6秒前
大饼完成签到,获得积分10
7秒前
科研通AI5应助Summer采纳,获得30
7秒前
无隅完成签到,获得积分10
7秒前
金虎发布了新的文献求助10
8秒前
科研通AI5应助springsdb采纳,获得10
8秒前
8秒前
清梦压星河完成签到 ,获得积分20
8秒前
9秒前
华仔应助完美的妙芹采纳,获得30
9秒前
搞不动科研完成签到,获得积分10
10秒前
慕青应助雪雪雪碧采纳,获得10
10秒前
可爱的函函应助111采纳,获得10
10秒前
许甜甜鸭应助fanghua采纳,获得10
11秒前
11秒前
11秒前
11秒前
马旭辉完成签到,获得积分20
12秒前
13秒前
浪者漫心发布了新的文献求助10
13秒前
13秒前
彭于晏应助yang采纳,获得10
13秒前
李健应助唠叨的夜玉采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817829
求助须知:如何正确求助?哪些是违规求助? 3361027
关于积分的说明 10411075
捐赠科研通 3079259
什么是DOI,文献DOI怎么找? 1691090
邀请新用户注册赠送积分活动 814309
科研通“疑难数据库(出版商)”最低求助积分说明 768075