Cross-Modal Graph Knowledge Representation and Distillation Learning for Land Cover Classification

计算机科学 人工智能 卷积神经网络 杠杆(统计) 图形 土地覆盖 蒸馏 机器学习 数据挖掘 情态动词 模式识别(心理学) 特征学习 特征提取 推论 理论计算机科学 土地利用 工程类 土木工程 有机化学 化学 高分子化学
作者
Wenzhen Wang,Fang Liu,Wenzhi Liao,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3307604
摘要

Complementary multimodal remote sensing (RS) data often leads to more robust and accurate classification performance. However, not all modal data can be available at the time of inference due to imaging conditions. To mitigate this issue, cross-modal knowledge distillation becomes an effective method, as it can leverage the complementary characteristics of multimodal data to guide cross-modal classification in cases with missing data. Therefore, this paper examines the shortcomings of traditional CNN cross-modal distillation methods in land cover classification: 1) insufficient knowledge representation; and 2) unstable knowledge transfer. Moreover, a novel cross-modal graph knowledge representation and distillation learning (CGKR-DL) framework is proposed to enhance land cover classification performance. The proposed CGKR-DL designs a single-stream joint feature learning network with convolutional neural network and graph convolutional network (CNN-GCN) to effectively construct the remote topology of data based on the strong correlation between land objects, thus enhancing the knowledge representation ability of the network. In addition, a multi-granularity graph distillation method is proposed to compensate for the inability of traditional CNN distillation in handling graph-structured information, where a feature distillation module based on graph discrimination (FD-GDM) is designed for stable graph feature distillation. We evaluate CGKR-DL on three publicly available multimodal RS datasets (HS-LiDAR, HS-SAR and HS-SAR-DSM) and achieve a significant improvement in comparison with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mercury关注了科研通微信公众号
1秒前
2秒前
Zz发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
6秒前
ksl发布了新的文献求助10
7秒前
wlk发布了新的文献求助10
7秒前
9秒前
任飞羽完成签到,获得积分10
9秒前
11秒前
11秒前
彭于晏应助连安彤采纳,获得10
11秒前
科目三应助LYSM采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
蒲公英发布了新的文献求助10
14秒前
星辰大海应助二十五采纳,获得10
14秒前
任风发布了新的文献求助10
14秒前
无花果应助直率的画笔采纳,获得10
16秒前
靓丽念薇发布了新的文献求助10
16秒前
16秒前
诸葛丞相发布了新的文献求助10
18秒前
18秒前
天天快乐应助Dceer采纳,获得10
19秒前
fhl发布了新的文献求助10
21秒前
Orange应助wang采纳,获得10
22秒前
22秒前
DanYang发布了新的文献求助10
24秒前
NexusExplorer应助任风采纳,获得10
24秒前
lufifi完成签到,获得积分10
25秒前
25秒前
26秒前
李健应助小野采纳,获得10
26秒前
26秒前
lijiaxin应助ustinian采纳,获得10
26秒前
白蓝发布了新的文献求助10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798013
求助须知:如何正确求助?哪些是违规求助? 3343467
关于积分的说明 10316165
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679383
邀请新用户注册赠送积分活动 806526
科研通“疑难数据库(出版商)”最低求助积分说明 763201