ConvNeXt-ST-AFF: A Novel Skin Disease Classification Model Based on Fusion of ConvNeXt and Swin Transformer

计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 特征提取 深度学习 人工神经网络 机器学习 工程类 电压 电气工程
作者
Shengnan Hao,Liguo Zhang,Yanyan Jiang,Jingkun Wang,Zhanlin Ji,Li Zhao,Иван Ганчев
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 117460-117473 被引量:3
标识
DOI:10.1109/access.2023.3324042
摘要

Automatic classification of dermatological images is an important technology that assists doctors in achieving faster and more accurate classification of skin diseases. Recently, convolutional neural networks (CNNs) and Transformer networks have been employed in learning respectively the local and global features of lesion images. However, existing works mainly focus on utilizing a single neural network for feature extraction, which limits the model classification performance. In order to tackle this problem, a novel fusion model, named ConvNeXt-ST-AFF, is proposed in this paper, by combining the strengths of ConvNeXt and Swin Transformer (ConvNeXt-ST in the model name). In the proposed model, the pretrained ConvNeXt and Swin Transformer networks extract local and global features from images, which are then fused using Attentional Feature Fusion (AFF) modules (AFF in the model name). Additionally, in order to enhance the model's attention on the regions of skin lesions during training, an Efficient Channel Attention (ECA) module is incorporated into the ConvNeXt network. Moreover, the proposed model employs a denoising module to reduce the influence of artifacts and improve the image contrast. The results, obtained by experiments conducted on two datasets, demonstrate that the proposed ConvNeXt-ST-AFF model has higher classification ability, based on multiple evaluation metrics, compared to the original ConvNeXt and Swin Transformer, and other state-of-the-art classification models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃的惮发布了新的文献求助10
刚刚
刚刚
Owen应助Lee采纳,获得10
刚刚
酷波er应助孙琪采纳,获得10
1秒前
wangx发布了新的文献求助10
2秒前
2秒前
刘觅儿完成签到,获得积分10
2秒前
2秒前
今后应助汎影采纳,获得10
2秒前
领导范儿应助Agoni采纳,获得10
2秒前
3秒前
闪闪的鹏博完成签到,获得积分10
3秒前
桃掉烦恼完成签到,获得积分10
3秒前
Owen应助雨洋采纳,获得10
3秒前
龙2024发布了新的文献求助10
3秒前
4秒前
Azura完成签到 ,获得积分10
5秒前
能干宛秋发布了新的文献求助10
5秒前
Hello应助DAVID采纳,获得10
5秒前
LORI完成签到,获得积分10
6秒前
6秒前
xiang发布了新的文献求助200
7秒前
7秒前
Akim应助LHL采纳,获得10
8秒前
8秒前
暴富完成签到,获得积分10
9秒前
无奈的老姆完成签到,获得积分20
9秒前
殷勤的半雪完成签到,获得积分10
9秒前
10秒前
charry完成签到,获得积分10
10秒前
10秒前
科研通AI5应助小满采纳,获得30
10秒前
田様应助YZ采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
英姑应助june采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868