Optimization model for low-carbon supply chain considering multi-level backup strategy under hybrid uncertainty

供应链 利润(经济学) 备份 数学优化 计算机科学 环境经济学 微观经济学 业务 经济 数学 营销 数据库
作者
Yingtong Wang,Xiaoyu Ji
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:126: 1-21 被引量:8
标识
DOI:10.1016/j.apm.2023.10.034
摘要

When constructing a supply chain, the profit, environmental impact, and hybrid uncertainties the supply chain faces should be considered. This research investigates the problem of low-carbon supply chain design under hybrid uncertainty, where demand is regarded as a stochastic variable, supply and transportation disruptions are regarded as uncertain events, and the coefficient of emission reduction capacity of suppliers is regarded as an uncertain variable. Based on the probability theory and uncertainty theory, a mixed-integer optimization model is constructed to handle the disruption risk by utilizing a multi-level backup strategy and to reduce carbon emissions by investing in suppliers. This model guarantees that manufacturers’ demand is satisfied to a given confidence level, manufacturers prefer to construct a supply chain within the acceptable supply chain risk, the emission reduction investment scheme and the supply decision to manufacturers are determined to maximize the profit of the supply chain. To facilitate the solution, we perform deterministic equivalent transformation of stochastic and uncertainty constraints, linearize the nonlinear constraints, and analyze the mathematical properties of the model. Finally, the validity of the proposed model is verified by case studies. The results show that although the larger the supply levels, that is, the more priority levels of suppliers, the more beneficial it is to improve the reliability, too large supply levels will reduce profits. The reasonable setting of the supply levels can optimize the emission reduction investment scheme. In addition, the confidence level of carbon emission should be set within a certain range to avoid the disparity between profit growth and emission reduction. Finally, the greater the belief degree of disruption or the lower the emission reduction capacity of suppliers, the more significant the effect of a multi-level backup strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研牛人完成签到,获得积分10
1秒前
hehe完成签到,获得积分10
1秒前
1秒前
聪聪发布了新的文献求助10
2秒前
红薯干完成签到,获得积分10
2秒前
赘婿应助猪爸爸采纳,获得10
3秒前
Luna发布了新的文献求助10
4秒前
4秒前
CC完成签到,获得积分10
4秒前
4秒前
霸王龙完成签到,获得积分10
4秒前
芜6完成签到,获得积分10
5秒前
南风知我意完成签到,获得积分10
5秒前
共渡完成签到,获得积分10
6秒前
qhdsyxy完成签到 ,获得积分10
6秒前
6秒前
YooLoo完成签到,获得积分10
7秒前
我爱科研科研爱我完成签到,获得积分10
7秒前
一丢丢发布了新的文献求助100
7秒前
8秒前
无限的小懒虫完成签到,获得积分10
8秒前
木香完成签到,获得积分10
8秒前
jielailai完成签到,获得积分10
8秒前
褚驳完成签到,获得积分10
8秒前
四爷完成签到,获得积分10
9秒前
Hesitate完成签到,获得积分10
9秒前
舒适逊发布了新的文献求助10
11秒前
yeye完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助lf-leo采纳,获得10
11秒前
Lucas应助聪聪采纳,获得10
12秒前
Akim应助Dandy采纳,获得10
12秒前
12秒前
12秒前
wyz完成签到,获得积分10
12秒前
mocheer完成签到,获得积分10
12秒前
pi完成签到 ,获得积分10
12秒前
Hesitate发布了新的文献求助10
13秒前
科研通AI2S应助嘿嘿嘿采纳,获得10
14秒前
nxu发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
Formula 1 Technology 1500
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030538
求助须知:如何正确求助?哪些是违规求助? 3569258
关于积分的说明 11357473
捐赠科研通 3299871
什么是DOI,文献DOI怎么找? 1816895
邀请新用户注册赠送积分活动 890996
科研通“疑难数据库(出版商)”最低求助积分说明 814001