Highly stable graphene oxide/nylon membrane for molecular separation

石墨烯 材料科学 纳滤 化学工程 水溶液 氧化物 选择性 渗透汽化 色谱法 渗透 纳米技术 有机化学 化学 生物化学 工程类 催化作用 冶金
作者
Haftu Gebrekiros Alemayehu,Rshan Beyene Hailu,Paulos Taddesse
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:34 (30): 305703-305703 被引量:4
标识
DOI:10.1088/1361-6528/acd060
摘要

Graphene oxide (GO), due to its one-atom-thick structure and enriched oxygenated functionalities, is a promising candidate material to develop nanofiltration membranes to tackle the current worldwide water shortage. However, the stability of the GO membrane in an aqueous environment and its long-term operation remains unresolved. These issues greatly affect the mass transfer in the GO membrane. Here, we fabricate an ultrathin GO membrane on a nylon substrate within 5 min with the help of vacuum filtration for molecular separation. Thus, GO/nylon membranes dried in an oven at temperatures of 70 °C show greater aqueous solution stability than those dried at room temperature. To validate the stability, both GO membranes were immersed in DI water for 20 d. As a result, the GO/nylon membrane dried at room temperature was completely detached from the substrate within 12 h, whereas the GO/nylon membrane that dried at 70 °C remained stable for more than 20 d without any physical damage. We suppose the enhanced stability is due to the thermally induced balance in electrostatic repulsion resulting in stabilizing of the GO membrane. This method improves the GO membrane's operating time, selectivity, and permeability. Therefore, the optimized GO/nylon membrane shows higher rejection of organic dyes (∼100%) and good selectivity for sulfate salts such as Na2SO4and MgSO4(>80%). The membrane continuously operates for more than 60 h with only a 30% water permeability decline and 100% rejection of dyes. We believe that the drying of GO/nylon membranes at a moderate temperature is important for enhanced separation performance and stability. This drying technique can be applied to other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李叭叭完成签到,获得积分10
刚刚
1秒前
重要的橘子关注了科研通微信公众号
2秒前
wuyt完成签到,获得积分20
4秒前
小鸭嘎嘎完成签到 ,获得积分10
6秒前
6秒前
6秒前
我是老大应助李耀京采纳,获得10
7秒前
不安的可乐完成签到,获得积分10
8秒前
蔺天宇完成签到,获得积分10
8秒前
Super完成签到,获得积分10
8秒前
liufan发布了新的文献求助10
9秒前
9秒前
9秒前
andy完成签到,获得积分10
10秒前
小宝宝发布了新的文献求助10
11秒前
11秒前
xtt完成签到,获得积分10
13秒前
13秒前
13秒前
sangsang发布了新的文献求助10
14秒前
XIAOJU_U完成签到 ,获得积分10
14秒前
14秒前
15秒前
彩色大碗完成签到,获得积分10
15秒前
Lucas应助zhuh采纳,获得10
16秒前
Akim应助重要的橘子采纳,获得10
17秒前
谢箬岑完成签到,获得积分10
17秒前
ggg发布了新的文献求助10
17秒前
宿雨完成签到,获得积分10
19秒前
搔扒完成签到,获得积分10
20秒前
杨萍完成签到,获得积分20
20秒前
勤奋帅帅完成签到,获得积分10
20秒前
卷卷完成签到,获得积分20
21秒前
21秒前
坚守初心完成签到,获得积分10
24秒前
24秒前
广州队完成签到,获得积分10
24秒前
Yang完成签到,获得积分10
25秒前
镓氧锌钇铀应助卷卷采纳,获得20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662