Unambiguous and High-Fidelity Backdoor Watermarking for Deep Neural Networks

后门 计算机科学 数字水印 人工智能 模棱两可 深度学习 高保真 机器学习 MNIST数据库 嵌入 深层神经网络 理论计算机科学 计算机安全 图像(数学) 工程类 电气工程 程序设计语言
作者
Guang Hua,Andrew Beng Jin Teoh,Yong Xiang,Hao Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11204-11217 被引量:8
标识
DOI:10.1109/tnnls.2023.3250210
摘要

The unprecedented success of deep learning could not be achieved without the synergy of big data, computing power, and human knowledge, among which none is free. This calls for the copyright protection of deep neural networks (DNNs), which has been tackled via DNN watermarking. Due to the special structure of DNNs, backdoor watermarks have been one of the popular solutions. In this article, we first present a big picture of DNN watermarking scenarios with rigorous definitions unifying the black- and white-box concepts across watermark embedding, attack, and verification phases. Then, from the perspective of data diversity, especially adversarial and open set examples overlooked in the existing works, we rigorously reveal the vulnerability of backdoor watermarks against black-box ambiguity attacks. To solve this problem, we propose an unambiguous backdoor watermarking scheme via the design of deterministically dependent trigger samples and labels, showing that the cost of ambiguity attacks will increase from the existing linear complexity to exponential complexity. Furthermore, noting that the existing definition of backdoor fidelity is solely concerned with classification accuracy, we propose to more rigorously evaluate fidelity via examining training data feature distributions and decision boundaries before and after backdoor embedding. Incorporating the proposed prototype guided regularizer (PGR) and fine-tune all layers (FTAL) strategy, we show that backdoor fidelity can be substantially improved. Experimental results using two versions of the basic ResNet18, advanced wide residual network (WRN28_10) and EfficientNet-B0, on MNIST, CIFAR-10, CIFAR-100, and FOOD-101 classification tasks, respectively, illustrate the advantages of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
haloucheng完成签到,获得积分20
刚刚
Rick完成签到,获得积分10
1秒前
斯文雁易发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
KINDMAGIC发布了新的文献求助20
4秒前
lanren666完成签到,获得积分10
4秒前
魁梧的鲂完成签到,获得积分10
4秒前
qq158014169发布了新的文献求助10
5秒前
kk完成签到,获得积分10
6秒前
aaa发布了新的文献求助10
7秒前
NexusExplorer应助gftrsxfr采纳,获得10
7秒前
竞鹤发布了新的文献求助10
8秒前
俭朴友安应助时尚东蒽采纳,获得10
9秒前
jngong应助lanren666采纳,获得10
9秒前
10秒前
11秒前
yiyi完成签到,获得积分10
12秒前
13秒前
KINDMAGIC发布了新的文献求助10
13秒前
14秒前
万能图书馆应助hh采纳,获得10
14秒前
18秒前
Waymaker完成签到 ,获得积分10
18秒前
chenchenchen发布了新的文献求助10
18秒前
wild_cube完成签到 ,获得积分10
19秒前
20秒前
20秒前
小底完成签到,获得积分10
20秒前
21秒前
斯文败类应助动听的蛟凤采纳,获得10
22秒前
liu发布了新的文献求助10
22秒前
科研通AI5应助huhutu采纳,获得10
22秒前
充电宝应助乐正广山采纳,获得10
23秒前
24秒前
科研通AI2S应助chenchenchen采纳,获得10
24秒前
英俊的铭应助谢晨曦采纳,获得30
24秒前
玉玊发布了新的文献求助10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794745
求助须知:如何正确求助?哪些是违规求助? 3339531
关于积分的说明 10296585
捐赠科研通 3056322
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244