Regulation on Morphology and Electronic Structure Design of Vanadium‐Based Sodium Phosphate Cathodes for High‐Performance Sodium‐Ion Batteries

阴极 形态学(生物学) 离子 磷酸盐 材料科学 化学 无机化学 冶金 地质学 有机化学 物理化学 古生物学
作者
Xinran Qi,Baoxiu Hou,Ruifang Zhang,Xiaocui Chen,Zhanzhao Fu,Xin Zhou,Haiyan Liu,Ningzhao Shang,Shuaihua Zhang,Longgang Wang,Chunsheng Li,Jianjun Song,Shuangqiang Chen,Xiaoxian Zhao
出处
期刊:Carbon energy [Wiley]
被引量:2
标识
DOI:10.1002/cey2.70030
摘要

ABSTRACT Sodium‐ion batteries have emerged as promising candidates for next‐generation large‐scale energy storage systems due to the abundance of sodium resources, low solvation energy, and cost‐effectiveness. Among the available cathode materials, vanadium‐based sodium phosphate cathodes are particularly notable for their high operating voltage, excellent thermal stability, and superior cycling performance. However, these materials face significant challenges, including sluggish reaction kinetics, the toxicity of vanadium, and poor electronic conductivity. To overcome these limitations and enhance electrochemical performance, various strategies have been explored. These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping, which effectively improve the diffusion of Na + and electrons in vanadium‐based phosphate cathodes. This review provides a comprehensive overview of the challenges associated with V‐based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance. Key vanadium‐based phosphate frameworks, such as orthophosphates (Na 3 V 2 (PO 4 ) 3 ), pyrophosphates (NaVP 2 O 7 , Na 2 (VO)P 2 O 7 , Na 7 V 3 (P 2 O 7 ) 4 ), and mixed phosphates (Na 7 V 4 (P 2 O 7 ) 4 PO 4 ), are discussed in detail, highlighting recent advances and insights into their structure–property relationships. The design of cathode material morphology offers an effective approach to optimizing material structures, compositions, porosity, and ion/electron diffusion pathways. Simultaneously, electronic structure tuning through element doping allows for the regulation of band structures, electron distribution, diffusion barriers, and the intrinsic conductivity of phosphate compounds. Addressing the challenges associated with vanadium‐based sodium phosphate cathode materials, this study proposes feasible solutions and outlines future research directions toward advancement of high‐performance vanadium‐based polyanion cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助eternal_dreams采纳,获得10
1秒前
mtl完成签到,获得积分10
1秒前
xixi发布了新的文献求助30
1秒前
无语发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
超级自中完成签到,获得积分20
3秒前
cw完成签到,获得积分10
3秒前
魔卡发布了新的文献求助10
4秒前
hhxhhx完成签到 ,获得积分20
4秒前
你好我有一个帽衫完成签到,获得积分10
5秒前
英姑应助寡寡采纳,获得10
5秒前
爱你不商量完成签到,获得积分10
5秒前
小牛发布了新的文献求助10
5秒前
Blackmamba发布了新的文献求助30
6秒前
佳敏完成签到,获得积分20
6秒前
科研通AI2S应助学术laji采纳,获得10
6秒前
wxy发布了新的文献求助10
6秒前
果实发布了新的文献求助10
6秒前
小新应助超级自中采纳,获得10
7秒前
赘婿应助卖萌的秋田采纳,获得10
7秒前
7秒前
7秒前
hjl90527发布了新的文献求助10
8秒前
8秒前
在水一方应助隐形尔蝶采纳,获得30
8秒前
自己哭哭发布了新的文献求助10
9秒前
浮游应助诚心孤菱采纳,获得10
9秒前
故意的秋烟完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
欧皇发布了新的文献求助10
10秒前
10秒前
小青椒应助炫炫炫采纳,获得30
10秒前
zzzq完成签到,获得积分0
10秒前
Frank完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098150
求助须知:如何正确求助?哪些是违规求助? 4310384
关于积分的说明 13430331
捐赠科研通 4137812
什么是DOI,文献DOI怎么找? 2266899
邀请新用户注册赠送积分活动 1270029
关于科研通互助平台的介绍 1206256