摘要
Sodium alginate (SA) has the advantages of good biocompatibility, water absorption, oxygen permeability, non-toxicity, and film-forming properties. SA is compounded with other materials to formulate a spinning solution. Subsequently, electrospinning is employed to fabricate nanofiber membranes. These membranes undergo cross-linking modification or hydrogel composite functionalization, yielding nanofiber composites exhibiting essential properties, including biodegradability, biocompatibility, low immunogenicity, and antimicrobial activity. Consequently, these functionalized composites are widely utilized in tissue engineering, regenerative engineering, biological scaffolds, and drug delivery systems, among other biomedical applications. This work reviews the sources, characteristics, and electrospinning preparation methods of SA, with a focus on the application and research status of SA composite nanofibers in tissue engineering scaffolds, wound dressings, drug delivery, and other fields. It can be concluded that SA electrospun nanofibers have great development potential and application prospects in biomedicine, which could better meet the increasingly complex and diverse needs of tissue or wound healing. At the same time, the future development trend of SA composite nanofibers was prospected in order to provide some theoretical reference for the development of biomedical textiles and to promote its development in the direction of being green, safe, and efficient.