Acrylonitrile–butadiene–styrene (ABS) has been widely used as an engineering thermoplastic, and the increasing post-consumer waste of ABS plastics calls for efficient and sustainable recycling technologies. The recent advances in ABS recycling technologies were investigated to enhance material recovery, purity, and environmental performance. Thermo-oxidative degradation compromises mechanical integrity during reprocessing, while minor reductions in molecular weight increase melt flow rates. Surface modification techniques such as boiling treatment, Fenton reaction, and microwave-assisted flotation facilitate the selective separation of ABS from mixed plastic waste by enhancing its hydrophilicity. Dissolution-based recycling using solvent and anti-solvent systems enables the recovery of high-purity ABS, though some additive losses may occur during subsequent molding. Magnetic levitation and triboelectrostatic separation provide innovative density and charge-based sorting mechanisms for multi-plastic mixtures. Thermochemical routes, including supercritical water gasification and pyrolysis, generate fuel-grade gases and oils from ABS blends. Mechanical recycling remains industrially viable when recycled ABS is blended with virgin resin, whereas plasma-assisted mechanochemistry has emerged as a promising technique to restore mechanical properties. These recycling technologies contribute to a circular plastic economy by improving efficiency, reducing environmental burden, and enabling the reuse of high-performance ABS materials.