Nephrobase Cell+: Multimodal Single-Cell Foundation Model for Decoding Kidney Biology

解码方法 基础(证据) 细胞 计算机科学 计算生物学 生物 细胞生物学 遗传学 地理 电信 考古
作者
Chenyu Li,Elias Ziyadeh,Yash Sharma,Bernhard Dumoulin,Jonathan Levinsohn,Eunji Ha,Siyu Pan,Vishwanatha Rao,Madhav Subramaniyam,Márió Szegedy,Nancy Zhang,Katalin Suszták
标识
DOI:10.1101/2025.09.30.679471
摘要

Abstract Background Large foundation models have revolutionized single-cell analysis, yet no kidney-specific model currently exists, and it remains unclear whether organ-focused models can outperform generalized models. The kidney’s complex cellular architecture and dynamic microenvironments further complicate integration of large-scale single-cell and spatial omics data, where current frameworks trained on limited datasets struggle to correct batch effects, capture cross-modality variation, and generalize across species. Methods We developed Nephrobase Cell+, the first kidney-focused large foundation model, pretrained on ~100 billion tokens from ~39.5 million single-cell and single-nucleus profiles across 4,319 samples, four mammalian species (human, mouse, rat, pig), and multiple assay modalities (scRNA-seq, snRNA-seq, snATAC-seq, spatial transcriptomics). Nephrobase Cell+ uses a transformer-based encoder-decoder architecture with gene-token cross-attention and a mixture-of-experts module for scalable representation learning. Results Nephrobase Cell+ sets a new benchmark for kidney single-cell analysis. It produces tightly clustered, biologically coherent embeddings in human and mouse kidneys, far surpassing previous foundation models such as Geneformer, scGPT, and UCE, as well as traditional methods such as PCA and autoencoders. It achieves the highest cluster concordance and batch-mixing scores, effectively removing donor/assay batch effects while preserving cell-type structure. Cross-species evaluation shows superior alignment of homologous cell types and >90% zero-shot annotation accuracy for major kidney lineages in both human and mouse. Even its 1B-parameter and 500M variants consistently outperform all existing models. Conclusions With organ-scale multimodal pretraining and a specialized transformer architecture, Nephrobase Cell+ delivers a unified, high-fidelity representation of kidney biology that is robust, cross-species transferable, and unmatched by current single-cell foundation models, offering a powerful resource for kidney genomics and disease research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖炒李子发布了新的文献求助10
1秒前
2秒前
巧克力怪完成签到 ,获得积分10
3秒前
田様应助蔚蓝采纳,获得10
3秒前
简单的八宝粥完成签到,获得积分10
5秒前
6秒前
加油完成签到 ,获得积分10
10秒前
风语村发布了新的文献求助10
10秒前
研友_VZG7GZ应助冷静香菇采纳,获得10
10秒前
llllliu发布了新的文献求助10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
烤冷面应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
tuanheqi应助科研通管家采纳,获得150
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
gkads应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得20
13秒前
ttw应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
哈哈完成签到,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
懵懂的土豆完成签到,获得积分10
13秒前
13秒前
上官若男应助笑点低的乌采纳,获得10
15秒前
田様应助宇宙尽头的派对采纳,获得20
16秒前
小宇宙完成签到,获得积分10
17秒前
Orange应助WaEi采纳,获得10
18秒前
19秒前
所所应助hsa_ID采纳,获得10
20秒前
21秒前
changping应助nishuixingzhou采纳,获得50
23秒前
杰杰大叔发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312