Nephrobase Cell+: Multimodal Single-Cell Foundation Model for Decoding Kidney Biology

解码方法 基础(证据) 细胞 计算机科学 计算生物学 生物 细胞生物学 遗传学 地理 电信 考古
作者
Chenyu Li,Elias Ziyadeh,Yash Sharma,Bernhard Dumoulin,Jonathan Levinsohn,Eunji Ha,Siyu Pan,Vishwanatha Rao,Madhav Subramaniyam,Márió Szegedy,Nancy Zhang,Katalin Suszták
标识
DOI:10.1101/2025.09.30.679471
摘要

Background: Large foundation models have revolutionized single-cell analysis, yet no kidney-specific model currently exists, and it remains unclear whether organ-focused models can outperform generalized models. The kidney's complex cellular architecture and dynamic microenvironments further complicate integration of large-scale single-cell and spatial omics data, where current frameworks trained on limited datasets struggle to correct batch effects, capture cross-modality variation, and generalize across species. Methods: We developed Nephrobase Cell+, the first kidney-focused large foundation model, pretrained on ~100 billion tokens from ~39.5 million single-cell and single-nucleus profiles across 4,319 samples, four mammalian species (human, mouse, rat, pig), and multiple assay modalities (scRNA-seq, snRNA-seq, snATAC-seq, spatial transcriptomics). Nephrobase Cell+ uses a transformer-based encoder-decoder architecture with gene-token cross-attention and a mixture-of-experts module for scalable representation learning. Results: Nephrobase Cell+ sets a new benchmark for kidney single-cell analysis. It produces tightly clustered, biologically coherent embeddings in human and mouse kidneys, far surpassing previous foundation models such as Geneformer, scGPT, and UCE, as well as traditional methods such as PCA and autoencoders. It achieves the highest cluster concordance and batch-mixing scores, effectively removing donor/assay batch effects while preserving cell-type structure. Cross-species evaluation shows superior alignment of homologous cell types and >90% zero-shot annotation accuracy for major kidney lineages in both human and mouse. Even its 1B-parameter and 500M variants consistently outperform all existing models. Conclusions: With organ-scale multimodal pretraining and a specialized transformer architecture, Nephrobase Cell+ delivers a unified, high-fidelity representation of kidney biology that is robust, cross-species transferable, and unmatched by current single-cell foundation models, offering a powerful resource for kidney genomics and disease research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanL完成签到,获得积分10
刚刚
1秒前
眼睛大怀曼完成签到,获得积分10
1秒前
爆米花应助辣目童子采纳,获得10
2秒前
2秒前
2秒前
2秒前
安珀发布了新的文献求助10
3秒前
耍酷的剑身完成签到 ,获得积分10
3秒前
嘟嘟图图完成签到,获得积分10
5秒前
5秒前
cj成发布了新的文献求助10
5秒前
完美的尔蓝完成签到,获得积分10
6秒前
kkai1发布了新的文献求助10
7秒前
8秒前
今后应助su采纳,获得10
8秒前
Zxy发布了新的文献求助10
8秒前
科研通AI5应助MrSong采纳,获得10
9秒前
9秒前
10秒前
iW完成签到 ,获得积分10
11秒前
洪山老狗完成签到,获得积分10
12秒前
HP发布了新的文献求助10
12秒前
13秒前
苹果映菱发布了新的文献求助10
13秒前
清风_breeze发布了新的文献求助10
15秒前
思源应助Newky采纳,获得10
16秒前
jack发布了新的文献求助30
16秒前
深情安青应助安珀采纳,获得10
18秒前
18秒前
Winfrednano完成签到,获得积分10
18秒前
YuSHhan发布了新的文献求助10
18秒前
leaolf应助小颜采纳,获得10
19秒前
浮游应助欣慰冬亦采纳,获得10
19秒前
22秒前
Owen应助ltt采纳,获得10
23秒前
24秒前
爆米花关注了科研通微信公众号
24秒前
su发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Walnut Culture In California: Walnut Blight 400
Representations of the Orient in Western Music: Violence and Sensuality 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4797810
求助须知:如何正确求助?哪些是违规求助? 4117503
关于积分的说明 12738048
捐赠科研通 3847815
什么是DOI,文献DOI怎么找? 2120213
邀请新用户注册赠送积分活动 1142280
关于科研通互助平台的介绍 1031924