A Survey on Evaluation of Large Language Models

计算机科学 人气 心理学 社会心理学
作者
Yupeng Chang,Xu Wang,Jindong Wang,Yuan Wu,Linyi Yang,Kaijie Zhu,Hao Chen,Xiaoyuan Yi,Cunxiang Wang,Yidong Wang,Wei Ye,Yue Zhang,Yi Chang,Philip S. Yu,Qiang Yang,Xing Xie
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (3): 1-45 被引量:415
标识
DOI:10.1145/3641289
摘要

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate , where to evaluate , and how to evaluate . Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, education, natural and social sciences, agent applications, and other areas. Secondly, we answer the ‘where’ and ‘how’ questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing the performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研临床两手抓完成签到 ,获得积分10
2秒前
酷波er应助伶俐的过客采纳,获得10
4秒前
方方完成签到 ,获得积分10
4秒前
zbh完成签到,获得积分10
7秒前
LILYpig完成签到 ,获得积分10
9秒前
查重率咋一百完成签到,获得积分10
10秒前
微笑高山完成签到 ,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得20
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
Cker完成签到,获得积分10
13秒前
luoyukejing完成签到,获得积分10
14秒前
xiaoputaor完成签到 ,获得积分10
15秒前
fusheng完成签到 ,获得积分10
16秒前
六叶草完成签到 ,获得积分10
19秒前
Lee_d应助伶俐的过客采纳,获得10
21秒前
浮生完成签到 ,获得积分10
23秒前
Xiaoming完成签到,获得积分0
23秒前
淘宝叮咚完成签到,获得积分10
26秒前
Lucas应助ldysaber采纳,获得10
27秒前
海荣完成签到,获得积分10
29秒前
GSQ完成签到,获得积分10
38秒前
happy完成签到 ,获得积分10
41秒前
权小夏完成签到 ,获得积分10
44秒前
略略略完成签到 ,获得积分10
46秒前
47秒前
任伟超完成签到,获得积分10
48秒前
stop here完成签到,获得积分10
48秒前
小小发布了新的文献求助10
53秒前
蔺天宇完成签到,获得积分10
55秒前
jiujieweizi完成签到 ,获得积分10
55秒前
congjia完成签到,获得积分10
56秒前
江幻天完成签到,获得积分10
56秒前
Tina酱完成签到 ,获得积分10
57秒前
58秒前
伶俐的过客完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931160
求助须知:如何正确求助?哪些是违规求助? 3476069
关于积分的说明 10989187
捐赠科研通 3206330
什么是DOI,文献DOI怎么找? 1771938
邀请新用户注册赠送积分活动 859266
科研通“疑难数据库(出版商)”最低求助积分说明 797078