计算机科学
跟踪(教育)
人工神经网络
无人机
事件(粒子物理)
实时计算
控制(管理)
人工智能
工程类
海洋工程
量子力学
物理
教育学
心理学
作者
Yuan Liu,Li Zhao,Sun Wenfang,Qing Wang,G.Y. Li,Haiyang Guo,Xin‐Xiang Zhang,Jiaming Zhang,Zhiqing Bai
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-12-26
卷期号:12: 11481-11491
被引量:2
标识
DOI:10.1109/access.2023.3347566
摘要
The current paper verifies the event-triggered finite-time tracking control of a fully actuated unmanned surface vessel under unmodeled dynamics and external disturbances. Radial basis function neural networks (RBFNNs), nonlinear disturbance observers (NDO), and the event-triggered mechanism (ETM) are utilized to design a new type of finite time tracking controller (FFTC). The proposed controller utilizes the dynamic surface control (DSC) approach to resolve the “differential explosion” issue of virtual control laws. Prescribed performance functions (PPFs) and the finite-time control (FFC) technique are utilized to specify the efficiency of tracking errors. The designed control laws make the control system of USV semi-globally practically finite-time stable (SGPFS) and make the tracking errors tend to a narrow residual set involving the specified bound in a finite time. In the end, the simulations reflect the presented FFTC’s efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI