scMulan: a multitask generative pre-trained language model for single-cell analysis

生成语法 计算机科学 自然语言处理 生成模型 语言学 语言模型 人工智能 心理学 哲学
作者
Haiyang Bian,Yixin Chen,Xiaomin Dong,Chen Li,Minsheng Hao,Sijie Chen,Jinyi Hu,Maosong Sun,Lei Wei,Xuegong Zhang
标识
DOI:10.1101/2024.01.25.577152
摘要

Abstract Gene expression could be perceived as a form of cell language, with underlying regulatory mechanisms akin to biological grammar. Decoding this “language” is critical in understanding cellular functions and behaviors, but presents significant challenges. Several works have attempted to learn the biological language by pre-training large foundation models based on single-cell transcriptomic data, inspired by the success of large language models in natural language processing. In this study, we further enrich the pre-training paradigm by integrating an abundance of metadata and a multiplicity of pre-training tasks, and obtain scMulan, a multitask generative pre-trained language model tailored for single-cell analysis. We represent a cell as a structured cell sentence (c-sentence) by encoding its gene expression, metadata terms, and target tasks as words of tuples, each consisting of entities and their corresponding values. We construct a unified generative framework to model the cell language on c-sentence and design three pretraining tasks to bridge the microscopic and macroscopic information within the c-sentences. We pre-train scMulan on 10 million single-cell transcriptomic data and their corresponding metadata, with 368 million parameters. As a single model, scMulan can accomplish tasks zero-shot for cell type annotation, batch integration, and conditional cell generation, guided by different task prompts. Also, scMulan is ready to be expanded for novel tasks through finetuning. We have evaluated the effectiveness of scMulan on multiple downstream tasks. As a foundation model, scMulan is pre-trained to capture both the microscopic regulations and macroscopic patterns of gene expression, positioning it as a multifunctional and easily expandable tool for comprehensive single-cell analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助爱笑夜蕾采纳,获得10
刚刚
sugus发布了新的文献求助10
刚刚
Mic完成签到,获得积分10
刚刚
风巽雷震之歌完成签到 ,获得积分10
1秒前
zzt完成签到,获得积分10
1秒前
jyzxzr完成签到,获得积分10
2秒前
幸运星完成签到 ,获得积分10
2秒前
科研通AI5应助活力的映阳采纳,获得10
2秒前
诺诺发布了新的文献求助10
3秒前
杰克李李完成签到,获得积分10
3秒前
3秒前
科研通AI5应助薛仁贵采纳,获得10
3秒前
ymx完成签到,获得积分10
3秒前
LF完成签到,获得积分10
4秒前
guci完成签到,获得积分10
4秒前
5秒前
彬瑞发布了新的文献求助10
5秒前
5秒前
上官若男应助xiaoqi采纳,获得10
5秒前
科研通AI2S应助zuitong采纳,获得10
5秒前
6秒前
xia完成签到,获得积分10
6秒前
6秒前
zz完成签到,获得积分10
7秒前
笨笨芯发布了新的文献求助10
7秒前
zzt发布了新的文献求助10
7秒前
Akim应助危机的安青采纳,获得10
8秒前
orixero应助amwlsai采纳,获得10
8秒前
9秒前
9秒前
希望天下0贩的0应助luca采纳,获得10
10秒前
李健应助日生采纳,获得10
10秒前
打打应助笨笨芯采纳,获得50
11秒前
11秒前
韭菜盒子发布了新的文献求助10
11秒前
黄怡婷发布了新的文献求助10
11秒前
慕舒发布了新的文献求助10
12秒前
guci发布了新的文献求助10
12秒前
HAHA发布了新的文献求助150
12秒前
chang发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978