Enhancing Protein Subcellular Localization Prediction Through Multi-Feature Fusion

融合 亚细胞定位 计算机科学 蛋白质亚细胞定位预测 人工智能 特征(语言学) 模式识别(心理学) 化学 细胞生物学 生物 哲学 语言学 生物化学 细胞质 基因
作者
Kai Zhao,Weiyang Liang,Xuehua Bi,Guanglei Yu,Quan Na,Linlin Zhang
标识
DOI:10.1109/smc53992.2023.10394073
摘要

Accurately determining the subcellular location of proteins is essential for comprehending their functions, as it provides crucial insights into biochemical pathways and regulatory mechanisms. Although some methods have achieved promising effects, there are still some negative aspects, such as inappropriate feature engineering. In this paper, we propose a method for predicting the subcellular location of proteins that combines multiple features taken from several data sources. Firstly, we obtain three features, Di-peptide Composition, Moran correlation and Conjoint-Triad, from the amino acid sequence. We also employ node2vec to extract features from protein-protein interaction networks and combine them with gene ontology. To eliminate redundant information between features, we then fuse the multiple features from different data source with an auto-encoder. Finally, we employ a supervised learning model, Wide and Deep, to predict the subcellular location of proteins. The experimental results demonstrate that our approach achieves higher accuracy than state-of-the-art methods. This approach provides a promising solution for accurately predicting the subcellular location of proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康舟发布了新的文献求助10
2秒前
小彤完成签到 ,获得积分10
2秒前
马天垚发布了新的文献求助10
3秒前
怕孤独的凤妖完成签到,获得积分10
3秒前
若俗人发布了新的文献求助10
4秒前
李健应助未桑采纳,获得30
5秒前
6秒前
hopen完成签到,获得积分10
7秒前
8秒前
lijunliang完成签到,获得积分10
10秒前
11秒前
11秒前
独特的高山完成签到 ,获得积分10
13秒前
wlmqljj发布了新的文献求助10
14秒前
buzhidao完成签到 ,获得积分10
14秒前
姽稚完成签到,获得积分10
17秒前
田様应助刻苦铁身采纳,获得10
19秒前
坚强幼荷完成签到,获得积分10
20秒前
xiazhq完成签到,获得积分10
23秒前
科研助手6应助yyy采纳,获得10
24秒前
wlmqljj完成签到,获得积分10
25秒前
26秒前
充电宝应助Kristin采纳,获得10
27秒前
27秒前
Rainnnn发布了新的文献求助10
29秒前
30秒前
NN发布了新的文献求助30
30秒前
Jenny完成签到,获得积分10
30秒前
南楼小阁主完成签到,获得积分10
32秒前
HilbertVon完成签到 ,获得积分10
33秒前
34秒前
34秒前
hexinyu发布了新的文献求助10
35秒前
chen发布了新的文献求助10
35秒前
自然秋柳完成签到 ,获得积分10
35秒前
shuang0116应助deng203采纳,获得10
36秒前
风中映菡完成签到,获得积分10
37秒前
llee2005完成签到,获得积分10
37秒前
发nature完成签到,获得积分10
40秒前
puijin完成签到,获得积分10
41秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790