清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust explanation supervision for false positive reduction in pulmonary nodule detection

结核(地质) 假阳性悖论 肺癌 人工智能 放射科 计算机科学 分割 癌症检测 医学 工作流程 假阳性和假阴性 模式识别(心理学) 癌症 病理 生物 内科学 数据库 古生物学
作者
Qilong Zhao,Chih‐Wei Chang,Xiaofeng Yang,Liang Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1687-1701 被引量:1
标识
DOI:10.1002/mp.16937
摘要

Abstract Background Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities. Purpose The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection. Methods A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing. Results Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions. Conclusions A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助鸿十三陵采纳,获得10
4秒前
Hina完成签到,获得积分0
12秒前
刘清河完成签到 ,获得积分10
15秒前
zz完成签到 ,获得积分10
21秒前
yellowonion完成签到 ,获得积分10
28秒前
所所应助陶醉的手套采纳,获得10
53秒前
了凡完成签到 ,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
xhy123454完成签到,获得积分20
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
科研通AI5应助zzy采纳,获得10
1分钟前
xhy123454关注了科研通微信公众号
1分钟前
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
nano完成签到 ,获得积分10
1分钟前
zzy发布了新的文献求助10
1分钟前
春夏秋冬完成签到 ,获得积分10
1分钟前
小飞完成签到 ,获得积分10
2分钟前
5433完成签到 ,获得积分10
2分钟前
Lee完成签到 ,获得积分10
2分钟前
丘比特应助13508104971采纳,获得10
2分钟前
Forest完成签到,获得积分10
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
yw完成签到,获得积分20
2分钟前
2分钟前
13508104971发布了新的文献求助10
2分钟前
娟娟加油完成签到 ,获得积分10
2分钟前
领导范儿应助zzy采纳,获得30
2分钟前
13508104971完成签到,获得积分10
2分钟前
2分钟前
Ji完成签到,获得积分10
2分钟前
zzy完成签到,获得积分10
2分钟前
zzy发布了新的文献求助30
2分钟前
神勇的天问完成签到 ,获得积分10
3分钟前
JY完成签到 ,获得积分10
3分钟前
自然的含蕾完成签到 ,获得积分10
3分钟前
3分钟前
zx完成签到 ,获得积分10
3分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800967
求助须知:如何正确求助?哪些是违规求助? 3346510
关于积分的说明 10329490
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763721