Do Habitat MRI and Fractal Analysis Help Distinguish Triple-Negative Breast Cancer From Non-Triple-Negative Breast Carcinoma

三阴性乳腺癌 医学 乳房磁振造影 乳腺癌 组内相关 分形维数 乳腺癌 磁共振弥散成像 癌症 病理 内科学 放射科 核医学 分形 磁共振成像 乳腺摄影术 临床心理学 数学分析 数学 心理测量学
作者
Run Xu,Dan Yu,Peng Luo,Xuefeng Li,Lei Jiang,Shixin Chang,Guanwu Li
出处
期刊:Canadian Association of Radiologists journal [SAGE]
卷期号:75 (3): 584-592 被引量:8
标识
DOI:10.1177/08465371241231573
摘要

Purpose: To determine whether multiparametric MRI-based spatial habitats and fractal analysis can help distinguish triple-negative breast cancer (TNBC) from non-TNBC. Method: Multiparametric DWI and DCE-MRI at 3T were obtained from 142 biopsy- and surgery-proven breast cancer with 148 breast lesions (TNBC = 26 and non-TNBC = 122). The contrast-enhancing lesions were divided into 3 spatial habitats based on perfusion and diffusion patterns using K-means clustering. The fractal dimension (FD) of the tumour subregions was calculated. The accuracy of the habitat segmentation was measured using the Dice index. Inter- and intra-reader reliability were evaluated with the intraclass correlation coefficient (ICC). The ability to predict TNBC status was assessed using the receiver operating characteristic curve. Results: The Dice index for the whole tumour was 0.81 for inter-reader and 0.88 for intra-reader reliability. The inter- and intra-reader reliability were excellent for all 3 tumour habitats and fractal features (ICC > 0.9). TNBC had a lower hypervascular cellular habitat and higher FD 1 compared to non-TNBC (all P < .001). Multivariate analysis confirmed that hypervascular cellular habitat (OR = 0.88) and FD 1 (OR = 1.35) were independently associated with TNBC (all P < .001) after adjusting for rim enhancement, axillary lymph nodes status, and histological grade. The diagnostic model combining hypervascular cellular habitat and FD 1 showed excellent discriminatory ability for TNBC, with an AUC of 0.951 and an accuracy of 91.9%. Conclusions: The fraction of hypervascular cellular habitat and its FD may serve as useful imaging biomarkers for predicting TNBC status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
深情安青应助萝卜干采纳,获得10
1秒前
Ava应助liutong采纳,获得10
1秒前
空勒发布了新的文献求助10
1秒前
wanci应助Fan采纳,获得10
2秒前
2秒前
2秒前
小马甲应助zz采纳,获得10
2秒前
科研通AI6应助rainbow采纳,获得10
2秒前
十月发布了新的文献求助10
3秒前
杨昕发布了新的文献求助10
3秒前
无花果应助ZTT采纳,获得10
4秒前
6秒前
QIUQIU完成签到,获得积分10
6秒前
如意艳血完成签到 ,获得积分10
6秒前
pluto应助大只鱼采纳,获得10
6秒前
6秒前
无极微光应助酷炫小馒头采纳,获得20
6秒前
Apple完成签到,获得积分10
7秒前
zhanglh123完成签到,获得积分10
8秒前
王震完成签到,获得积分10
8秒前
你为什么不学习完成签到 ,获得积分10
9秒前
Richard_Li发布了新的文献求助10
9秒前
9秒前
菜菜完成签到,获得积分10
11秒前
11秒前
沉静的万天完成签到 ,获得积分10
12秒前
CodeCraft应助gaoyalin采纳,获得10
12秒前
RC_Wang发布了新的文献求助10
12秒前
12秒前
C14H10发布了新的文献求助10
13秒前
ZTT完成签到,获得积分10
14秒前
妮妮发布了新的文献求助10
15秒前
15秒前
莹莹完成签到 ,获得积分10
17秒前
17秒前
朱欣宇完成签到,获得积分10
17秒前
希望天下0贩的0应助Precious采纳,获得10
18秒前
cincrady完成签到,获得积分10
19秒前
打打应助爱你一万年采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496863
求助须知:如何正确求助?哪些是违规求助? 4594479
关于积分的说明 14445063
捐赠科研通 4527042
什么是DOI,文献DOI怎么找? 2480630
邀请新用户注册赠送积分活动 1465088
关于科研通互助平台的介绍 1437844