Glutamyl-prolyl-tRNA synthetase (EPRS1) drives tubulointerstitial nephritis-induced fibrosis by enhancing T cell proliferation and activity

免疫系统 纤维化 分子生物学 癌症研究 过继性细胞移植 T细胞 化学 医学 生物 免疫学 内科学 内分泌学
作者
Chaelin Kang,Donghwan Yun,Haein Yoon,Minki Hong,Juhyeon Hwang,Hyun Mu Shin,Seokwoo Park,Seongmin Cheon,Dohyun Han,Kyung Chul Moon,Hye Young Kim,Eun Young Choi,Eun Young Lee,Myung Hee Kim,Chang Wook Jeong,Cheol Kwak,Dong Ki Kim,Kook‐Hwan Oh,Kwon Wook Joo,Dong‐Sup Lee
出处
期刊:Kidney International [Elsevier BV]
卷期号:105 (5): 997-1019 被引量:3
标识
DOI:10.1016/j.kint.2024.01.011
摘要

Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/– mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/– mice. TIN-induced fibrosis was also reduced in Rag1–/– mice adoptively transferred with Eprs1+/– T cells compared to the Rag1–/– mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells. Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/– mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/– mice. TIN-induced fibrosis was also reduced in Rag1–/– mice adoptively transferred with Eprs1+/– T cells compared to the Rag1–/– mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康幸福平安完成签到,获得积分10
2秒前
无花果应助何1采纳,获得10
4秒前
科研通AI5应助光亮向雁采纳,获得10
9秒前
猪皮恶人完成签到,获得积分10
10秒前
所所应助知足的憨人*-*采纳,获得10
12秒前
chuckle完成签到,获得积分10
12秒前
14秒前
18秒前
xcltzh1296完成签到,获得积分10
18秒前
猪皮恶人发布了新的文献求助10
23秒前
wuming完成签到,获得积分10
24秒前
潇洒小松鼠完成签到,获得积分10
27秒前
Ayo完成签到,获得积分20
30秒前
aaaaa完成签到,获得积分10
32秒前
HEAUBOOK应助chunzau采纳,获得10
36秒前
38秒前
必发Nature完成签到,获得积分10
38秒前
土豆淀粉完成签到 ,获得积分10
41秒前
AaronDon给AaronDon的求助进行了留言
42秒前
43秒前
jenningseastera应助满意项链采纳,获得10
47秒前
陶世立完成签到 ,获得积分10
49秒前
50秒前
万能图书馆应助青栞采纳,获得10
53秒前
光亮向雁发布了新的文献求助10
55秒前
文静完成签到,获得积分10
55秒前
小宋应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得30
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
勤恳立轩应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Benchen完成签到,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
niu应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
抹茶拿铁加奶砖完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315