Deep Learning for Coronary Stenosis Detection in Heavily Calcified Plaques at Coronary CT Angiography: A Stepwise, Multicenter Study

作者
Rui Wang,Shanqing Wang,Libo Zhang,U. Joseph Schoepf,Fandong Zhang,Wei Chen,Zhen Zhou,Zhe Fang,Bin Hu,Yizhou Yu,Jiayin Zhang,Ximing Wang,Long Jiang Zhang,Lei Xu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:: e250109-e250109
标识
DOI:10.1148/ryai.250109
摘要

Purpose To develop and validate a deep-learning (DL) model for automated assessment of coronary stenosis in vessels with heavily calcified plaques on coronary CT angiography (CCTA), using quantitative coronary angiography (QCA) as the reference standard. Materials and Methods A total of 10,101 CCTAs (June 2017-December 2020) from three tertiary hospitals in China were retrospectively collected for DL model development. External testing dataset 1 included 442 CCTAs (Agatston score > 300) from two independent hospitals (January 2021–May 2022) for performance evaluation. A separate external testing dataset 2 of 120 CCTAs was used for a reader study assessing whether DL assistance improved diagnostic accuracy among junior, attending, and senior radiologists. External testing dataset 3 included 150 prospectively collected CCTAs (June–July 2023) were analyzed to compare model performance against clinical reports, simulating real-world deployment. Model diagnostic performance was assessed using receiver operating characteristic (ROC) analysis, with QCA as reference. Results In external testing dataset 1, specificities for detecting ≥ 50% stenosis were 78%, 74%, 48% and AUCs were 0.89, 0.90, 0.87 at segment, vessel, and patient levels, respectively. In external testing dataset 2, DL assistance improved radiologist specificity by 7–11% ( P < .001) with improving AUC, and increased interreader agreement (Δκ = 0.155–0.228, P < .05). In external testing dataset 3, the model demonstrated 53% specificity and higher AUC versus clinical reports (0.91 vs 0.76, P < .001). Conclusion The proposed DL model accurately detected coronary stenosis of heavily calcified plaques on CCTA and improved diagnostic performance of radiologists. © The Author(s) 2025. Published by the Radiological Society of North America under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆完成签到,获得积分20
刚刚
刚刚
希望天下0贩的0应助Nom采纳,获得10
1秒前
nn完成签到 ,获得积分10
1秒前
2秒前
一一发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
LziT发布了新的文献求助10
4秒前
4秒前
麦麦发布了新的文献求助10
4秒前
hunajx完成签到,获得积分10
5秒前
5秒前
铁妹发布了新的文献求助10
7秒前
diyi发布了新的文献求助10
7秒前
科研通AI2S应助刻苦大门采纳,获得10
7秒前
7秒前
8秒前
FashionBoy应助缥缈的天玉采纳,获得10
8秒前
lansing完成签到 ,获得积分10
8秒前
华仔应助butterflycat采纳,获得10
8秒前
紫瑕完成签到,获得积分10
8秒前
耍酷傲菡完成签到,获得积分10
8秒前
俏皮的芝麻完成签到,获得积分10
9秒前
9秒前
9秒前
Shawn发布了新的文献求助10
9秒前
传奇3应助麦麦采纳,获得10
10秒前
jrx发布了新的文献求助10
11秒前
11秒前
11秒前
爱撒娇的朋友完成签到,获得积分10
11秒前
WUWEI发布了新的文献求助10
12秒前
13秒前
丘比特应助豆豆突采纳,获得10
13秒前
14秒前
diyi完成签到,获得积分10
14秒前
15秒前
吴彦祖发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266