亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Why Antiholins? Thermodynamic and Kinetic Arguments to Explain the Robustness of Bacteriophage Cell Lysis

溶解 稳健性(进化) 噬菌体 动能 统计物理学 化学 物理 生物 经典力学 遗传学 生物化学 大肠杆菌 基因
作者
Anupam Mondal,Anatoly B. Kolomeisky
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:16 (11): 2920-2926 被引量:1
标识
DOI:10.1021/acs.jpclett.5c00420
摘要

Cell lysis is one of the most common biological processes in which viruses infect and destroy bacterial cells. It is accomplished by viruses stimulating cell hosts to produce holin proteins that assemble in cellular membranes and break them at specific times. One of the most surprising observations in cell lysis is that antiholin proteins that inhibit membrane permeabilization are also produced. It remains unclear what is the function of antiholins if they do not trigger the membrane lesions. We propose a novel theoretical idea to explain the role of antiholins. We hypothesize that antiholin-holin interactions support the robustness of cell lysis when the external conditions fluctuate. To test this idea, we developed a minimal theoretical model that allows us to investigate the thermodynamic and kinetic properties of the system explicitly. By comparing a two-state system (without antiholins) and a three-state system (with antiholins), we examined how temperature and interaction energies influence the formation of holin dimers, a key determinant of lysis timing. Our results reveal that without antiholins, increasing temperature always decreases holin dimerization, leading to a reduction in the probability and slower rates of cell lysis. However, the presence of antiholins eliminates these effects, increasing the probability and rates of cell lysis. It is argued that this results from a compensatory mechanism that effectively buffers holin dimers from these environmental variations. These findings suggest that antiholins are stabilizing elements that ensure robust cell lysis under fluctuating physiological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vchen0621发布了新的文献求助10
4秒前
12秒前
13秒前
Luke发布了新的文献求助10
13秒前
yyds应助兼听则明采纳,获得50
16秒前
llldf完成签到 ,获得积分10
20秒前
23秒前
26秒前
欣喜的人龙完成签到 ,获得积分10
31秒前
Lucas应助科研通管家采纳,获得10
33秒前
34秒前
35秒前
42秒前
45秒前
48秒前
53秒前
科研通AI6应助Luke采纳,获得10
57秒前
果果发布了新的文献求助10
57秒前
58秒前
59秒前
Eon完成签到 ,获得积分10
1分钟前
Monnine发布了新的文献求助10
1分钟前
小灰灰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
kdjc完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
冰冻西红柿完成签到,获得积分20
1分钟前
1分钟前
1分钟前
木木完成签到 ,获得积分10
1分钟前
答辩完成签到 ,获得积分10
1分钟前
2分钟前
3927456843发布了新的文献求助30
2分钟前
2分钟前
热情的觅云完成签到 ,获得积分10
2分钟前
今后应助Lancer1034采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639446
求助须知:如何正确求助?哪些是违规求助? 4748356
关于积分的说明 15006435
捐赠科研通 4797628
什么是DOI,文献DOI怎么找? 2563654
邀请新用户注册赠送积分活动 1522632
关于科研通互助平台的介绍 1482326