Global Dissipativity for Quaternion Valued Inertial Neural Networks With Unbounded Time‐Varying Delays

数学 四元数 惯性参考系 控制理论(社会学) 纯数学 应用数学 数学分析 几何学 人工智能 计算机科学 经典力学 控制(管理) 物理
作者
S. K. Singh,Anup Singh,Jinde Cao
出处
期刊:Mathematical Methods in The Applied Sciences [Wiley]
卷期号:48 (11): 10991-11006 被引量:1
标识
DOI:10.1002/mma.10936
摘要

ABSTRACT In this article, the authors investigate the global and exponential dissipativity of quaternion‐valued inertial neural networks (QVINNs) with mixed time‐varying delays, without utilizing order reduction of inertial neural networks (INNs) and quaternion separation methods. Using innovative Lyapunov functional and inequality techniques, several fruitful sufficient criteria with multi‐parameters are derived for QVINNs to ensure global dissipativity (GD), which generalizes and refines existing results. This article estimates the attractive sets and exponentially attractive sets globally. Unlike previous studies in which quaternion‐valued neural networks (QVNNs) are separated into real‐valued neural networks (RVNNs) and INNs are reduced into first‐order systems, the foundation of this article rests upon approaches that diverge from the traditional methods of separation and order reduction. Unlike existing results on the GD of traditional neural networks (NNs) with bounded discrete time delays, this article focuses on INNs with unbounded discrete time‐varying delays, which is more realistic because neurons consider their entire past rather than partial history within bounded time delays. In general, in exponential stability, synchronization, and dissipativity results, researchers typically impose an upper bound on the rate of convergence , but in the present article, the authors investigate dissipativity criteria without such a restriction on the convergence rate in global exponential dissipativity (GED). Finally, to demonstrate the efficiency of our theoretical work, three consecutive examples are proposed to illustrate the effectiveness of the obtained results. The first two examples verify the proposed results, and the third one, related to QVNNs, redemonstrates the efficiency of storing true color image patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peng发布了新的文献求助10
刚刚
刚刚
Aw发布了新的文献求助10
1秒前
Hello应助寄翠采纳,获得10
1秒前
完美世界应助lr123456采纳,获得10
1秒前
深情安青应助bujiachong采纳,获得10
1秒前
1秒前
张杰发布了新的文献求助10
1秒前
欣喜莫茗完成签到 ,获得积分10
1秒前
子杰完成签到 ,获得积分10
2秒前
文青发布了新的文献求助10
2秒前
CHANG完成签到 ,获得积分10
2秒前
马瑞安发布了新的文献求助10
3秒前
小马甲应助齐新采纳,获得10
3秒前
无花果应助干净的碧空采纳,获得10
3秒前
4秒前
途中的人发布了新的文献求助10
4秒前
4秒前
fionaFDU完成签到,获得积分10
5秒前
初余完成签到,获得积分10
6秒前
lys发布了新的文献求助10
6秒前
李爱国应助anlikek采纳,获得10
7秒前
7秒前
8秒前
yuky发布了新的文献求助10
8秒前
典雅若完成签到,获得积分20
8秒前
科研通AI2S应助悦耳黑夜采纳,获得10
8秒前
ccm应助悦耳黑夜采纳,获得10
8秒前
可爱的函函应助悦耳黑夜采纳,获得10
8秒前
8秒前
yoyo发布了新的文献求助10
8秒前
bujiachong完成签到,获得积分10
9秒前
9秒前
万能图书馆应助张杰采纳,获得10
9秒前
顺心沁完成签到,获得积分10
9秒前
大熊完成签到 ,获得积分10
9秒前
9秒前
Syo发布了新的文献求助10
10秒前
朴实的忆秋完成签到,获得积分20
10秒前
随便起个吧完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055