运输工程
道路交通
温室气体
公路运输
环境科学
业务
环境规划
工程类
生态学
生物
作者
Lu Yan,Lin Guo,Xiao Run-mou
摘要
Rapid urbanization in China is intensifying travel demand while making transport the nation’s third-largest source of carbon emissions. Anticipating continued growth in private-car fleets, this study integrates vehicle-stock forecasting with multi-scenario emission modeling to identify effective decarbonization pathways for Chinese cities. First, Kendall rank and grey relational analyses are combined to screen the key drivers of car ownership, creating a concise input set for prediction. A Lévy-flight-enhanced Sparrow Search Algorithm (LSSA) is then used to optimize the smoothing factor of the Generalized Regression Neural Network (GRNN), producing the Levy flight-improved Sparrow Search Algorithm optimized Generalized Regression Neural Network (LSSA-GRNN) model for annual fleet projections. Second, a three-tier scenario framework—Baseline, Moderate Low-Carbon, and Enhanced Low-Carbon—is constructed in the Long-range Energy Alternatives Planning System (LEAP) platform. Using Ningbo as a case study, the LSSA-GRNN outperforms both the benchmark Sparrow Search Algorithm optimized Generalized Regression Neural Network (SSA-GRNN) and the conventional GRNN across all accuracy metrics. Results indicate that Ningbo’s car fleet will keep expanding to 2030, albeit at a slowing rate. Relative to 2022 levels, the Enhanced Low-Carbon scenario delivers the largest emission reduction, driven primarily by accelerated electrification, whereas public transport optimization exhibits a slower cumulative effect. The methodological framework offers a transferable tool for cities seeking to link fleet dynamics with emission scenarios and to design robust low-carbon transport policies.
科研通智能强力驱动
Strongly Powered by AbleSci AI