Enhancing Pulmonary Disease Prediction Using Large Language Models with Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study based on Radiology Report (Preprint)

自动汇总 预印本 特征(语言学) 计算机科学 自然语言处理 人工智能 肺病 情报检索 医学 医学物理学 万维网 内科学 语言学 哲学
作者
Ruiteng Li,Shuai Mao,Congmin Zhu,Yiming Yang,Chunting Tan,Li Li,Xiangdong Mu,Honglei Liu,Yuqing Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
被引量:1
标识
DOI:10.2196/72638
摘要

The rapid advancements in natural language processing, particularly the development of large language models (LLMs), have opened new avenues for managing complex clinical text data. However, the inherent complexity and specificity of medical texts present significant challenges for the practical application of prompt engineering in diagnostic tasks. This paper explores LLMs with new prompt engineering technology to enhance model interpretability and improve the prediction performance of pulmonary disease based on a traditional deep learning model. A retrospective dataset including 2965 chest CT radiology reports was constructed. The reports were from 4 cohorts, namely, healthy individuals and patients with pulmonary tuberculosis, lung cancer, and pneumonia. Then, a novel prompt engineering strategy that integrates feature summarization (F-Sum), chain of thought (CoT) reasoning, and a hybrid retrieval-augmented generation (RAG) framework was proposed. A feature summarization approach, leveraging term frequency-inverse document frequency (TF-IDF) and K-means clustering, was used to extract and distill key radiological findings related to 3 diseases. Simultaneously, the hybrid RAG framework combined dense and sparse vector representations to enhance LLMs' comprehension of disease-related text. In total, 3 state-of-the-art LLMs, GLM-4-Plus, GLM-4-air (Zhipu AI), and GPT-4o (OpenAI), were integrated with the prompt strategy to evaluate the efficiency in recognizing pneumonia, tuberculosis, and lung cancer. The traditional deep learning model, BERT (Bidirectional Encoder Representations from Transformers), was also compared to assess the superiority of LLMs. Finally, the proposed method was tested on an external validation dataset consisted of 343 chest computed tomography (CT) report from another hospital. Compared with BERT-based prediction model and various other prompt engineering techniques, our method with GLM-4-Plus achieved the best performance on test dataset, attaining an F1-score of 0.89 and accuracy of 0.89. On the external validation dataset, F1-score (0.86) and accuracy (0.92) of the proposed method with GPT-4o were the highest. Compared to the popular strategy with manually selected typical samples (few-shot) and CoT designed by doctors (F1-score=0.83 and accuracy=0.83), the proposed method that summarized disease characteristics (F-Sum) based on LLM and automatically generated CoT performed better (F1-score=0.89 and accuracy=0.90). Although the BERT-based model got similar results on the test dataset (F1-score=0.85 and accuracy=0.88), its predictive performance significantly decreased on the external validation set (F1-score=0.48 and accuracy=0.78). These findings highlight the potential of LLMs to revolutionize pulmonary disease prediction, particularly in resource-constrained settings, by surpassing traditional models in both accuracy and flexibility. The proposed prompt engineering strategy not only improves predictive performance but also enhances the adaptability of LLMs in complex medical contexts, offering a promising tool for advancing disease diagnosis and clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mym发布了新的文献求助10
刚刚
愿好完成签到,获得积分10
刚刚
1秒前
852应助SunSun采纳,获得10
1秒前
1秒前
2秒前
小武同学完成签到 ,获得积分10
2秒前
2秒前
科研通AI2S应助Kate采纳,获得10
3秒前
3秒前
任性舞蹈发布了新的文献求助30
3秒前
雪花的梦33关注了科研通微信公众号
4秒前
5秒前
hhh发布了新的文献求助10
5秒前
6秒前
科研通AI6应助妙柏采纳,获得10
6秒前
wanci应助tang采纳,获得10
6秒前
纯小二完成签到,获得积分20
7秒前
HeAuBook举报Zhouzhou求助涉嫌违规
8秒前
山谷110发布了新的文献求助30
8秒前
8秒前
你好发布了新的文献求助10
8秒前
茅十八完成签到,获得积分10
9秒前
共享精神应助KKK采纳,获得20
9秒前
胡高照完成签到,获得积分10
9秒前
9秒前
FashionBoy应助hhhhh采纳,获得10
10秒前
Wxy发布了新的文献求助10
10秒前
10秒前
BK201发布了新的文献求助10
11秒前
852应助微眠采纳,获得10
12秒前
ZJFL发布了新的文献求助10
12秒前
12秒前
科研通AI6应助郭亚丽采纳,获得10
12秒前
肖肖完成签到,获得积分10
12秒前
胡高照发布了新的文献求助50
12秒前
阿柠完成签到,获得积分10
15秒前
子木发布了新的文献求助10
15秒前
HeAuBook举报KK求助涉嫌违规
15秒前
朴素的向雁完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343