Partially domain-adaptive rolling bearing fault diagnosis based on joint weighting and metric optimization

加权 方位(导航) 公制(单位) 断层(地质) 接头(建筑物) 领域(数学分析) 计算机科学 控制理论(社会学) 数学优化 结构工程 数学 人工智能 地质学 声学 数学分析 物理 工程类 地震学 控制(管理) 运营管理
作者
Zhiwu Shang,Shuai Wang,Cailu Pan,Changchao Wu,Lina Yao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adce20
摘要

Abstract Partial-domain adaptive techniques are widely applied in cross-operational bearing fault diagnosis to address inconsistencies between source and target domain fault classes effectively. However, existing studies face challenges in feature alignment, including insufficient alignment of shared class fault features between the source and target domains, interference from outlier class samples in the source domain, and low-confidence pseudo-labels in the target domain. These issues hinder efficient alignment of shared class features, ultimately reducing fault diagnosis performance. This paper proposes a partial-domain deep migration model (JWMDA) that integrates joint weighting and metric optimization. To improve the alignment of shared class fault features, a joint metric combining covariance alignment (CORAL) and local maximum mean difference (LMMD) is developed. This metric complements adversarial training, reduces distributional differences between domains, and optimizes feature alignment. To address interference from outlier class samples in the source domain, class-level weights are employed to effectively mitigate the negative migration effects of these samples. Additionally, sample-level weights are introduced to reduce the negative migration effects of low-confidence pseudo-labels and boundary samples, enhancing the accuracy and robustness of shared class feature alignment. The proposed method is validated through experiments on both public and self-constructed bearing datasets. Experimental results demonstrate that the proposed method achieves higher diagnostic accuracy than existing partially domain-adaptive methods in cross-operational diagnostic tasks involving similar and different equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cassandra1231发布了新的文献求助10
1秒前
冷静映安完成签到,获得积分10
1秒前
执着惜梦发布了新的文献求助10
2秒前
2秒前
hoongyan完成签到 ,获得积分10
2秒前
2秒前
爱吃糖的虎纹猫咪完成签到,获得积分10
3秒前
悦白发布了新的文献求助10
3秒前
溏心蛋发布了新的文献求助20
4秒前
4秒前
4秒前
慕青应助愉快的白桃采纳,获得10
5秒前
英姑应助66668888采纳,获得10
5秒前
dd完成签到,获得积分10
6秒前
yidi01完成签到,获得积分10
6秒前
优雅友蕊完成签到,获得积分10
6秒前
6秒前
科研通AI5应助机智依丝采纳,获得10
7秒前
幽默莞发布了新的文献求助10
7秒前
8秒前
8秒前
思源应助FFF采纳,获得10
8秒前
8秒前
脖酱完成签到,获得积分10
8秒前
8秒前
wy关闭了wy文献求助
8秒前
9秒前
FashionBoy应助kingripple采纳,获得10
10秒前
可爱的彩虹应助跳跃的卿采纳,获得30
10秒前
10秒前
10秒前
卷卷完成签到,获得积分20
10秒前
lizhiqian2024发布了新的文献求助10
10秒前
10秒前
10秒前
RSC完成签到,获得积分10
10秒前
张欢欢完成签到,获得积分10
11秒前
11秒前
11秒前
哈哈王子发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723