已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimized Data Distribution Learning for Enhancing Vision Transformer‐Based Object Detection in Remote Sensing Images

人工智能 计算机科学 计算机视觉 目标检测 变压器 模式识别(心理学) 工程类 电压 电气工程
作者
Huaxiang Song,Junping Xie,Yunyang Wang,Lihua Fu,Yang Zhou,Xing Zhou
出处
期刊:Photogrammetric Record [Wiley]
卷期号:40 (189) 被引量:1
标识
DOI:10.1111/phor.70004
摘要

ABSTRACT Existing Vision Transformer (ViT)‐based object detection methods for remote sensing images (RSIs) face significant challenges due to the scarcity of RSI samples and the over‐reliance on enhancement strategies originally developed for natural images. This often leads to inconsistent data distributions between training and testing subsets, resulting in degraded model performance. In this study, we introduce an optimized data distribution learning (ODDL) strategy and develop an object detection framework based on the Faster R‐CNN architecture, named ODDL‐Net. The ODDL strategy begins with an optimized augmentation (OA) technique, overcoming the limitations of conventional data augmentation methods. Next, we propose an optimized mosaic algorithm (OMA), improving upon the shortcomings of traditional Mosaic augmentation techniques. Additionally, we introduce a feature fusion regularization (FFR) method, addressing the inherent limitations of classic feature pyramid networks. These innovations are integrated into three modular, plug‐and‐play components—namely, the OA, OMA, and FFR modules—ensuring that the ODDL strategy can be seamlessly incorporated into existing detection frameworks without requiring significant modifications. To evaluate the effectiveness of the proposed ODDL‐Net, we develop two variants based on different ViT architectures: the Next ViT (NViT) small model and the Swin Transformer (SwinT) tiny model, both used as detection backbones. Experimental results on the NWPU10, DIOR20, MAR20, and GLH‐Bridge datasets demonstrate that both variants of ODDL‐Net achieve impressive accuracy, surpassing 23 state‐of‐the‐art methods introduced since 2023. Specifically, ODDL‐Net‐NViT attained accuracies of 78.3% on the challenging DIOR20 dataset and 61.4% on the GLH‐Bridge dataset. Notably, this represents a substantial improvement of approximately 23% over the Faster R‐CNN‐ResNet50 baseline on the DIOR20 dataset. In conclusion, this study demonstrates that ViTs are well suited for high‐accuracy object detection in RSIs. Furthermore, it provides a straightforward solution for building ViT‐based detectors, offering a practical approach that requires little model modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助寒冷寄真采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
科研皇完成签到,获得积分10
4秒前
须臾发布了新的文献求助10
4秒前
5秒前
7秒前
maolao完成签到,获得积分20
8秒前
10秒前
深情安青应助Yyyyyyyyy采纳,获得10
10秒前
11秒前
12秒前
nns完成签到,获得积分10
12秒前
华仔应助muse采纳,获得10
14秒前
香蕉觅云应助须臾采纳,获得10
15秒前
麋鹿完成签到 ,获得积分10
19秒前
开朗的鞋子完成签到,获得积分10
19秒前
19秒前
bc应助顺心幻丝采纳,获得10
21秒前
动漫大师发布了新的文献求助30
21秒前
mangguo发布了新的文献求助30
25秒前
九月完成签到,获得积分10
25秒前
田様应助yl采纳,获得10
25秒前
希希完成签到 ,获得积分10
25秒前
26秒前
28秒前
大模型应助jazzmantan采纳,获得10
28秒前
刺五加发布了新的文献求助10
29秒前
30秒前
榴下晨光完成签到,获得积分10
33秒前
Amy完成签到 ,获得积分10
33秒前
Mr.Su完成签到 ,获得积分10
33秒前
何向发布了新的文献求助10
35秒前
科研小菜完成签到 ,获得积分10
35秒前
35秒前
37秒前
mangguo完成签到,获得积分20
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Bayesian Analysis with Python: A practical guide to probabilistic modeling , Third Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369430
关于积分的说明 10455848
捐赠科研通 3089037
什么是DOI,文献DOI怎么找? 1699622
邀请新用户注册赠送积分活动 817423
科研通“疑难数据库(出版商)”最低求助积分说明 770217