A deep learning-based segmentation method for multi-scale and overlapped bubbles in gas–liquid bubbly flow

物理 比例(比率) 流量(数学) 气泡 两相流 流动可视化 机械 量子力学
作者
Zhilong Yang,Wenbin Tian,Xiaoliang Deng,Xiaoqiao He,Zhiying Wang,Jingzhu Wang,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3) 被引量:3
标识
DOI:10.1063/5.0254679
摘要

In the realm of fluid dynamics, gas–liquid bubbly flow represents a prevalent and significant multiphase flow phenomenon. With the advancement of imaging technology, high-speed photography combined with image processing techniques has become a common method for measuring bubbly flows. To overcome the challenges posed by multi-scale and overlapping bubbles in gas–liquid bubbly flows, a deep learning-based method for precise bubble contour segmentation and trajectory tracking has been developed. This approach involves specific optimizations and enhancements to the one-stage object detection model “You-Only-Look-Once version 8”, leading to a bubble segmentation algorithm that strikes a balance between speed and precision. Omni-dimension dynamic convolution and high-resolution feature layer pyramid level 2 (P2) were integrated into the model to extract more precise spatial and texture information, enhancing precision and facilitating the detection of small-sized bubbles. Additionally, to address the issue of severe bubble overlap in images, the bubble spatially enhanced attention module was developed to capitalize on detailed texture, thereby achieving the segmentation of severely overlapping bubbles. Based on the improved detection model, combined with the Botsort tracking algorithm, vanishing bubble re-identification as well as continuous tracking of severely occluded bubbles are realized. The model achieves inference speeds of 0.427 s on central processing unit and 0.03 s on graphics processing unit (GPU), respectively, facilitating its application in efficiently processing large comprehensive datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
坚强的之双完成签到,获得积分10
4秒前
柔弱金毛发布了新的文献求助10
4秒前
共享精神应助nian采纳,获得10
6秒前
小马甲应助dadadaniu采纳,获得10
6秒前
7秒前
曲凯发布了新的文献求助10
8秒前
DUB发布了新的文献求助10
8秒前
浮游应助pocky采纳,获得10
8秒前
浮游应助沉静代芹采纳,获得10
10秒前
科研通AI5应助沉静代芹采纳,获得10
10秒前
10秒前
11秒前
13秒前
开朗黑猫完成签到,获得积分10
13秒前
研友_VZG7GZ应助蛋炒饭i采纳,获得10
14秒前
善学以致用应助youyou采纳,获得10
14秒前
kanny发布了新的文献求助10
16秒前
猎空发布了新的文献求助10
17秒前
18秒前
风中黎昕完成签到 ,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
猎空完成签到,获得积分10
21秒前
漂亮明辉完成签到,获得积分10
23秒前
海洋不快乐完成签到,获得积分10
24秒前
26秒前
曲凯完成签到,获得积分10
28秒前
28秒前
Dellamoffy完成签到,获得积分10
29秒前
周周发布了新的文献求助10
29秒前
31秒前
Alex应助老武采纳,获得20
33秒前
俞晓发布了新的文献求助10
35秒前
35秒前
高贵的晓筠完成签到 ,获得积分10
36秒前
雪山飞龙发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853348
求助须知:如何正确求助?哪些是违规求助? 4151127
关于积分的说明 12860947
捐赠科研通 3899981
什么是DOI,文献DOI怎么找? 2143075
邀请新用户注册赠送积分活动 1162870
关于科研通互助平台的介绍 1063221