Foreground Mask Estimation for Person Re-identification

计算机科学 联营 人工智能 边距(机器学习) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 点(几何) 鉴定(生物学) 计算机视觉 数学 机器学习 生物 程序设计语言 哲学 植物 语言学 几何学
作者
Yangyang Cheng,Shan Liang,Haopeng Wang,Lu Liu,Jun Li
标识
DOI:10.1109/iccsi55536.2022.9970692
摘要

Due to low resolution feature map and global average pooling, the features output from the standard baseline of person re-identification (ReID) are mixed with a large amount of background information during the construction of high-dimensional features. In order to solve the problem, we propose a new person ReID method based on foreground mask estimation. Firstly, in the data preparation stage, we make the key point area label for training set by using the human key point detection model OpenPose, which provides a reference for the design of loss function; Secondly, we propose foreground mask estimation for person ReID. HRNetv2-W32 is selected as the backbone to obtain a high-resolution feature map and a network branch is added after backbone to estimate the foreground mask which has a high distinction between foreground and background. We propose to map the mask onto the feature map to avoid introducing a large amount of background information. Moreover, a new loss function called Excess the Mean with Margin Loss (EMML) is proposed for mask-estimated branch, and mask visualization Experiments show multiple losses, including EMML, Triplet loss and ID loss, can ensure that foreground and background on the mask are clearly distinguished while they simultaneously supervise the training of model. In the experimental stage, we compare the feature maps obtained by our method with those obtained by baseline, which shows the effectiveness in eliminating background information. And we evaluate the proposed method on two public datasets, including Market1501 and DukeMTMC-ReID, Rank-1/mAP reached 95.0%/96.1% and 90.4%/79.8% respectively with only using global features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助WYang采纳,获得10
刚刚
1秒前
shihangZhang完成签到,获得积分10
1秒前
赵李锋完成签到,获得积分10
3秒前
6260完成签到,获得积分10
3秒前
呃呃呃c完成签到 ,获得积分10
4秒前
sdl发布了新的文献求助10
5秒前
科研通AI5应助果冻采纳,获得20
5秒前
一帆风顺发布了新的文献求助10
5秒前
W~舞发布了新的文献求助10
6秒前
6秒前
祈君发布了新的文献求助30
7秒前
不困完成签到,获得积分20
7秒前
8秒前
9秒前
10秒前
小草完成签到,获得积分10
11秒前
嗷嗷嗷完成签到 ,获得积分10
11秒前
zho关闭了zho文献求助
11秒前
13秒前
梨涡发布了新的文献求助10
14秒前
tiantian8715完成签到,获得积分10
14秒前
酷波er应助WYang采纳,获得10
14秒前
rush完成签到,获得积分10
15秒前
orixero应助纪瑄采纳,获得10
15秒前
NewW完成签到 ,获得积分10
15秒前
16秒前
ccc完成签到 ,获得积分10
16秒前
16秒前
李健应助迷路芝麻采纳,获得10
18秒前
顾矜应助虾米吃螃蟹采纳,获得10
18秒前
19秒前
995发布了新的文献求助10
19秒前
xc完成签到,获得积分10
20秒前
嘟嘟发布了新的文献求助10
21秒前
祈君完成签到,获得积分20
21秒前
qiany发布了新的文献求助10
21秒前
Yiqi发布了新的文献求助150
22秒前
陌陌给陌陌的求助进行了留言
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947