Classification of Major Depressive Disorder Based on Integrated Temporal and Spatial Functional MRI Variability Features of Dynamic Brain Network

重性抑郁障碍 随机森林 接收机工作特性 特征选择 人工智能 静息状态功能磁共振成像 特征(语言学) 相关性 人口 Lasso(编程语言) 计算机科学 机器学习 医学 内科学 数学 放射科 哲学 万维网 几何学 环境卫生 扁桃形结构 语言学
作者
Qun Gai,Tongpeng Chu,Kaili Che,Yuna Li,Fanghui Dong,Haicheng Zhang,Qinghe Li,Heng Ma,Ying‐Hong Shi,Feng Zhao,Jing Liu,Ning Mao,Haizhu Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (3): 827-837 被引量:9
标识
DOI:10.1002/jmri.28578
摘要

Background Characterization of the dynamics of functional brain network has gained increased attention in the study of depression. However, most studies have focused on single temporal dimension, while ignoring spatial dimensional information, hampering the discovery of validated biomarkers for depression. Purpose To integrate temporal and spatial functional MRI variability features of dynamic brain network in machine‐learning techniques to distinguish patients with major depressive disorder (MDD) from healthy controls (HCs). Study Type Prospective. Population A discovery cohort including 119 patients and 106 HCs and an external validation cohort including 126 patients and 124 HCs from Rest‐meta‐MDD consortium. Field Strength/Sequence A 3.0 T/resting‐state functional MRI using the gradient echo sequence. Assessment A random forest (RF) model integrating temporal and spatial variability features of dynamic brain networks with separate feature selection method (M SFS ) was implemented for MDD classification. Its performance was compared with three RF models that used: temporal variability features (M TVF ), spatial variability features (M SVF ), and integrated temporal and spatial variability features with hybrid feature selection method (M HFS ). A linear regression model based on M SFS was further established to assess MDD symptom severity, with prediction performance evaluated by the correlations between true and predicted scores. Statistical Tests Receiver operating characteristic analyses with the area under the curve (AUC) were used to evaluate models' performance. Pearson's correlation was used to assess relationship of predicted scores and true scores. P < 0.05 was considered statistically significant. Results The model with M SFS achieved the best performance, with AUCs of 0.946 and 0.834 in the discovery and validation cohort, respectively. Additionally, altered temporal and spatial variability could significantly predict the severity of depression ( r = 0.640) and anxiety ( r = 0.616) in MDD. Data Conclusion Integration of temporal and spatial variability features provides potential assistance for clinical diagnosis and symptom prediction of MDD. Evidence Level 2. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的如柏完成签到,获得积分10
刚刚
tramp应助务实的绮山采纳,获得10
刚刚
寇博翔发布了新的文献求助10
刚刚
梁亚龙完成签到,获得积分10
1秒前
1秒前
xyy完成签到,获得积分10
1秒前
xol发布了新的文献求助10
2秒前
liaya完成签到,获得积分10
2秒前
Ying发布了新的文献求助10
2秒前
xiaowang完成签到,获得积分10
2秒前
badada完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
Ava应助斗罗大陆采纳,获得10
4秒前
脑洞疼应助日天的马铃薯采纳,获得10
4秒前
4秒前
科研通AI2S应助轩羊羊采纳,获得10
4秒前
vivianfou完成签到,获得积分10
5秒前
6秒前
杨炀发布了新的文献求助10
6秒前
6秒前
云影箫羽完成签到 ,获得积分10
6秒前
芳芳子呀完成签到,获得积分10
6秒前
晒太阳的乌龟完成签到,获得积分10
6秒前
科研小白完成签到,获得积分10
7秒前
kai_完成签到,获得积分10
7秒前
清爽盼秋发布了新的文献求助10
8秒前
yyyyds发布了新的文献求助10
9秒前
CipherSage应助饼饼采纳,获得30
9秒前
9秒前
玲月完成签到,获得积分10
9秒前
9秒前
王平完成签到,获得积分10
9秒前
9秒前
云影箫羽关注了科研通微信公众号
9秒前
u点小糕冷发布了新的文献求助10
9秒前
卷大喵完成签到,获得积分10
9秒前
kangnakangna完成签到,获得积分10
9秒前
10秒前
myLv98完成签到,获得积分20
10秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892689
求助须知:如何正确求助?哪些是违规求助? 3435476
关于积分的说明 10793675
捐赠科研通 3160571
什么是DOI,文献DOI怎么找? 1745590
邀请新用户注册赠送积分活动 842985
科研通“疑难数据库(出版商)”最低求助积分说明 786984