Hidden Feature-Guided Semantic Segmentation Network for Remote Sensing Images

计算机科学 特征(语言学) 人工智能 特征提取 分割 模式识别(心理学) 杂乱 卷积神经网络 代表(政治) 特征学习 电信 雷达 哲学 语言学 政治 政治学 法学
作者
Zhen Wang,Shanwen Zhang,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:13
标识
DOI:10.1109/tgrs.2023.3244273
摘要

For semantic segmentation of remote sensing images, convolutional neural networks (CNNs) have proven to be powerful tools. However, the existing CNN-based methods have the problems of feature information loss, serious interference by clutter information, and ignoring the correlation between different scale features. To solve these problems, this article proposes a novel hidden feature-guided semantic segmentation network (HFGNet) for remote sensing images, which achieves accurate semantic segmentation by hierarchically extracting and fusing valuable feature information. Specifically, the hidden feature extraction module (HFE-M) is introduced to suppress the salient feature representation to mine more valuable hidden features. Meanwhile, the multifeature interactive fusion module (MIF-M) establishes the correlation between different features to achieve hierarchical feature fusion. The multiscale feature calibration module (MSFC) is constructed to enhance the diversity and refinement representation of hierarchical fusion features. Besides, the local-channel attention mechanism (LCA-M) is designed to improve the feature perception capability of the object region and suppress background information interference. We conducted extensive experiments on the widely used ISPRS 2-D Semantic Labeling dataset and the 15-Class Gaofen Image dataset. Experimental results demonstrate that the proposed HFGNet has advantages over several state-of-the-art methods. The source code and models are available at https://github.com/darkseid-arch/RS-HFGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刹那完成签到,获得积分10
刚刚
木仔仔发布了新的文献求助10
2秒前
3秒前
制冷剂完成签到 ,获得积分10
3秒前
HL完成签到 ,获得积分10
6秒前
愉快竺发布了新的文献求助30
6秒前
一澜发布了新的文献求助10
9秒前
9秒前
10秒前
烟花应助芋泥夹心采纳,获得10
11秒前
111发布了新的文献求助10
13秒前
熊巴巴发布了新的文献求助20
15秒前
丰富飞阳发布了新的文献求助10
16秒前
栗子完成签到 ,获得积分10
18秒前
111完成签到,获得积分20
20秒前
CipherSage应助舒服的踏歌采纳,获得10
21秒前
英俊的铭应助HopeStar采纳,获得10
23秒前
乐乐应助阿匡采纳,获得10
23秒前
所所应助霜霜采纳,获得10
24秒前
脑洞疼应助打死小胖纸采纳,获得30
27秒前
小蘑菇应助岩岫清风采纳,获得10
28秒前
28秒前
30秒前
躺赢完成签到 ,获得积分10
30秒前
Rain完成签到,获得积分10
31秒前
33秒前
Nniu完成签到,获得积分10
34秒前
34秒前
科研通AI5应助一澜采纳,获得10
34秒前
坚强的小蘑菇完成签到 ,获得积分10
35秒前
HopeStar发布了新的文献求助10
35秒前
ding应助Rain采纳,获得30
37秒前
可爱牛排发布了新的文献求助50
38秒前
JamesPei应助zhk采纳,获得10
38秒前
小李子完成签到 ,获得积分10
39秒前
42秒前
科目三应助清脆水卉采纳,获得10
43秒前
44秒前
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794562
求助须知:如何正确求助?哪些是违规求助? 3339387
关于积分的说明 10295828
捐赠科研通 3056074
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762191