强化学习
听诊
计算机科学
跟踪(教育)
任务(项目管理)
常量(计算机编程)
机器人
接触力
过程(计算)
控制(管理)
模拟
控制理论(社会学)
控制工程
人工智能
工程类
量子力学
系统工程
教育学
程序设计语言
心理学
医学
操作系统
放射科
物理
作者
Tieyi Zhang,Chao Chen,Minglei Shu,Ruotong Wang,Chong Di,Gang Li
出处
期刊:Sensors
[MDPI AG]
日期:2023-02-15
卷期号:23 (4): 2186-2186
被引量:1
摘要
Intelligent medical robots can effectively help doctors carry out a series of medical diagnoses and auxiliary treatments and alleviate the current shortage of social personnel. Therefore, this paper investigates how to use deep reinforcement learning to solve dynamic medical auscultation tasks. We propose a constant force-tracking control method for dynamic environments and a modeling method that satisfies physical characteristics to simulate the dynamic breathing process and design an optimal reward function for the task of achieving efficient learning of the control strategy. We have carried out a large number of simulation experiments, and the error between the tracking of normal force and expected force is basically within ±0.5 N. The control strategy is tested in a real environment. The preliminary results show that the control strategy performs well in the constant force-tracking of medical auscultation tasks. The contact force is always within a safe and stable range, and the average contact force is about 5.2 N.
科研通智能强力驱动
Strongly Powered by AbleSci AI