劈形算符
物理
反应扩散系统
前线(军事)
空格(标点符号)
对流扩散方程
李普希茨连续性
组合数学
数学物理
数学分析
数学
量子力学
语言学
哲学
气象学
欧米茄
出处
期刊:Cornell University - arXiv
日期:2016-01-01
标识
DOI:10.48550/arxiv.1609.01431
摘要
This paper is concerned with the existence of pulsating traveling fronts for the equation: $\partial_t u - \nabla \cdot (A(t, x)\nabla u) + q(t, x) \cdot \nabla u = f (t, x, u)$, (1) where the diffusion matrix $A$, the advection term $q$ and the reaction term $f$ are periodic in $t$ and $x$. We prove that there exist some speeds $c^*$ and $c^{**}$ such that there exists a pulsating traveling front of speed $c$ for all $c\ge c^{**}$ and that there exists no such front of speed $c
科研通智能强力驱动
Strongly Powered by AbleSci AI