加速度
现场可编程门阵列
计算机科学
硬件加速
卷积(计算机科学)
功率消耗
计算
嵌入式系统
建筑
并行计算
集合(抽象数据类型)
硬件体系结构
功率(物理)
计算机硬件
算法
软件
操作系统
人工智能
艺术
物理
经典力学
量子力学
人工神经网络
程序设计语言
视觉艺术
作者
Yizhou Chen,De Ma,Jiada Mao
标识
DOI:10.1109/cstic61820.2024.10531990
摘要
This paper introduces a hardware acceleration architecture based on sparsity and implements it on the foundation of NVDLA. This optimization accelerates computation and reduces dynamic power consumption by actively skipping zero elements in the convolution. The design adopts a sparse compressing method, CSB, and a load balancing algorithm. The design is implemented on the XILINX ZYNQ 7045 FPGA platform, with an operating frequency set at 100MHz. The result achieves a 1.79x acceleration, with power consumption reduced to 91.36% of its pre-optimization value at the cost of only 9.5% increase in area.
科研通智能强力驱动
Strongly Powered by AbleSci AI