RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:14
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zw完成签到,获得积分10
1秒前
2836366925完成签到,获得积分10
1秒前
1秒前
研友_nPPdan完成签到,获得积分10
2秒前
3秒前
励志小薛完成签到,获得积分10
3秒前
3秒前
葡萄干儿发布了新的文献求助10
3秒前
布布发布了新的文献求助10
3秒前
科研通AI6应助坤坤的篮球采纳,获得10
3秒前
嘻嘻嘻呀完成签到,获得积分10
4秒前
向沛山完成签到 ,获得积分10
4秒前
kaola完成签到,获得积分10
4秒前
5秒前
yurenxiaojie发布了新的文献求助10
5秒前
欢呼的渊思完成签到,获得积分10
5秒前
研友_VZG7GZ应助捞鱼采纳,获得10
6秒前
6秒前
赖以筠发布了新的文献求助30
6秒前
华仔应助月亮与木恩采纳,获得10
6秒前
依然小爽发布了新的文献求助10
6秒前
ewmmel完成签到 ,获得积分10
8秒前
科研通AI6应助yolanda采纳,获得30
8秒前
8秒前
情怀应助早早采纳,获得10
9秒前
烟花应助crispshu采纳,获得10
9秒前
猫小猪发布了新的文献求助10
9秒前
阴香萍完成签到,获得积分10
9秒前
10秒前
10秒前
yuan1226发布了新的文献求助10
10秒前
sunow77发布了新的文献求助10
11秒前
夏虫语冰完成签到,获得积分10
11秒前
11秒前
紫菜发布了新的文献求助10
12秒前
12秒前
科研通AI6应助mgg采纳,获得10
12秒前
12秒前
12秒前
赖以筠完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277