亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments

光流 同时定位和映射 计算机科学 计算机视觉 人工智能 流量(数学) 机器人 移动机器人 物理 图像(数学) 机械
作者
Liang Qin,Chang Wu,Zhenyu Chen,Xiaotong Kong,Zejie Lv,Zhiqi Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14669-14684 被引量:3
标识
DOI:10.1109/tits.2024.3402241
摘要

Visual Simultaneous Localization and Mapping (VSLAM) has undergone gradual development and found widespread application. However, existing VSLAM systems predominantly rely on static environment assumptions, leading to diminished robustness and localization accuracy in the presence of dynamic elements. Previous research has primarily employed geometric and semantic constraints to address dynamic regions of the scene. Nevertheless, their efficacy is limited in complex dynamic scenarios involving non-rigid objects, non-predefined motion targets, and low dynamic motion targets. Furthermore, the majority of dynamic SLAM methods are predominantly designed for indoor RGBD environments, resulting in a lack of generalizability. In this paper, a dynamic SLAM method that combines instance segmentation and optical flow called RSO-SLAM is proposed. RSO-SLAM is designed to operate effectively in diverse complex motion scenarios, both indoors and outdoors, and supports various visual sensor modes, including monocular, stereo, and RGBD setups. The proposed approach amalgamates semantic information and optical flow data by employing a "KMC:k-means $+$ connectivity" based algorithm for motion region detection within the scene. Furthermore, it integrates an optical flow attenuation propagation strategy to facilitate meticulous motion probability computations and inter-frame propagation within each identified region. Our methodology's superiority over existing dynamic SLAM approaches is firmly established through comprehensive evaluations across a diverse range of intricate dynamic scenarios. These evaluations encompass various conditions of high and low dynamism in both indoor and outdoor environments, accompanied by rigorous ablation experiments and real-world assessments. RSO-SLAM exhibits enhanced robustness and higher localization accuracy, rendering it well-suited for nearly all dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助科研通管家采纳,获得10
13秒前
伯爵不是奶茶完成签到,获得积分20
25秒前
42秒前
yao发布了新的文献求助10
45秒前
1分钟前
1分钟前
yao发布了新的文献求助10
1分钟前
yao完成签到,获得积分10
1分钟前
呆呆完成签到 ,获得积分10
2分钟前
Marciu33发布了新的文献求助10
2分钟前
YU完成签到 ,获得积分20
2分钟前
2分钟前
cc完成签到,获得积分10
2分钟前
许不让应助Marciu33采纳,获得10
4分钟前
踏实绮露完成签到 ,获得积分10
4分钟前
4分钟前
穆雨发布了新的文献求助10
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
5分钟前
冰块发布了新的文献求助10
5分钟前
沈惠映完成签到 ,获得积分10
5分钟前
草木完成签到 ,获得积分10
5分钟前
JamesPei应助冰块采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
RiziaJahanRiza完成签到,获得积分20
7分钟前
浮曳完成签到,获得积分10
7分钟前
ljl86400完成签到,获得积分10
7分钟前
大饼完成签到 ,获得积分10
8分钟前
8分钟前
t铁核桃1985完成签到 ,获得积分10
8分钟前
Lilith完成签到,获得积分10
8分钟前
抚琴祛魅完成签到 ,获得积分10
9分钟前
调皮的天真完成签到 ,获得积分10
10分钟前
zly完成签到 ,获得积分10
10分钟前
忘忧Aquarius完成签到,获得积分10
10分钟前
11分钟前
11分钟前
高分求助中
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
Bond and Bond Option Pricing based on the Current Term Structure 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4787200
求助须知:如何正确求助?哪些是违规求助? 4112910
关于积分的说明 12723598
捐赠科研通 3838509
什么是DOI,文献DOI怎么找? 2116256
邀请新用户注册赠送积分活动 1139039
关于科研通互助平台的介绍 1025970