MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models

5-甲基胞嘧啶 计算生物学 表观遗传学 机器学习 鉴定(生物学) 计算机科学 核糖核酸 人类疾病 人工智能 生物信息学 生物 遗传学 基因 DNA甲基化 基因表达 植物
作者
Hiroyuki Kurata,Md. Harun-Or-Roshid,Md Mehedi Hasan,Sho Tsukiyama,Kazuhiro Maeda,Balachandran Manavalan
出处
期刊:Methods [Elsevier BV]
卷期号:227: 37-47 被引量:3
标识
DOI:10.1016/j.ymeth.2024.05.004
摘要

RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅晓霜完成签到,获得积分10
1秒前
飘逸灰狼完成签到,获得积分10
1秒前
zho发布了新的文献求助10
2秒前
卢健辉完成签到,获得积分10
3秒前
kxy完成签到,获得积分10
3秒前
wsfy15完成签到 ,获得积分10
3秒前
jiajia完成签到,获得积分10
4秒前
dreammaker发布了新的文献求助10
5秒前
6秒前
6秒前
勇敢兔兔发布了新的文献求助10
6秒前
疯狂的迪子完成签到 ,获得积分10
7秒前
7秒前
谨慎海安完成签到,获得积分10
7秒前
小二郎应助耍酷思远采纳,获得10
7秒前
菠萝炒饭应助桃桃不加冰采纳,获得10
8秒前
8秒前
9秒前
爱科研的罗罗完成签到,获得积分10
10秒前
勇敢兔兔发布了新的文献求助10
10秒前
11秒前
Hylin发布了新的文献求助30
12秒前
科研通AI5应助七九采纳,获得10
12秒前
Ava应助小歪采纳,获得10
13秒前
博修发布了新的文献求助10
15秒前
唠叨的元槐完成签到,获得积分20
16秒前
程程发布了新的文献求助10
16秒前
16秒前
科研通AI5应助yin采纳,获得30
17秒前
舒适沛儿完成签到,获得积分10
18秒前
赘婿应助眼睛大的黑猫采纳,获得10
18秒前
张张完成签到,获得积分10
18秒前
psy完成签到,获得积分10
19秒前
小王完成签到,获得积分10
19秒前
Owen应助小巴采纳,获得10
19秒前
林志伟完成签到 ,获得积分10
20秒前
feng完成签到,获得积分10
21秒前
11完成签到,获得积分10
22秒前
23秒前
星辰大海应助机灵水卉采纳,获得10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798733
求助须知:如何正确求助?哪些是违规求助? 3344375
关于积分的说明 10319975
捐赠科研通 3060930
什么是DOI,文献DOI怎么找? 1679908
邀请新用户注册赠送积分活动 806780
科研通“疑难数据库(出版商)”最低求助积分说明 763386