Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:6
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的鱼完成签到 ,获得积分10
1秒前
华仔应助怡然的怀莲采纳,获得10
2秒前
lyj完成签到,获得积分10
3秒前
雷锋完成签到,获得积分10
7秒前
8秒前
无奈天亦完成签到,获得积分10
12秒前
songjing发布了新的文献求助10
12秒前
紫薯完成签到 ,获得积分10
15秒前
深情安青应助程风破浪采纳,获得10
16秒前
红油曲奇完成签到 ,获得积分10
17秒前
宋德宇完成签到,获得积分20
17秒前
Linda完成签到 ,获得积分10
18秒前
汉堡包应助Sunday采纳,获得10
21秒前
hh完成签到 ,获得积分10
24秒前
111完成签到 ,获得积分10
25秒前
jj完成签到,获得积分10
29秒前
LL完成签到,获得积分10
31秒前
35秒前
NexusExplorer应助asdwe172009采纳,获得50
36秒前
甜甜纲手完成签到,获得积分10
37秒前
40秒前
fu19921016完成签到 ,获得积分10
42秒前
顺心靖雁完成签到,获得积分10
43秒前
蓝风铃完成签到 ,获得积分10
44秒前
45秒前
45秒前
乐观的莆完成签到,获得积分10
45秒前
木云浅夏发布了新的文献求助10
45秒前
康康完成签到,获得积分10
46秒前
46秒前
科研通AI5应助无奈的萍采纳,获得10
46秒前
yangyang发布了新的文献求助10
48秒前
内向绿竹发布了新的文献求助10
50秒前
聪慧雪糕发布了新的文献求助10
51秒前
Sunday发布了新的文献求助10
52秒前
火星上的雨莲完成签到,获得积分10
55秒前
Grant完成签到 ,获得积分10
57秒前
59秒前
1分钟前
认真平蝶完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549