MRI-Based Prediction of Clinical Improvement Following Ventricular Shunt Placement for Normal Pressure Hydrocephalus (NPH): Development and Evaluation of an Integrated Multi-Sequence Machine Learning Algorithm

医学 常压脑积水 分流(医疗) 脑积水 序列(生物学) 算法 放射科 外科 内科学 计算机科学 疾病 遗传学 生物 痴呆
作者
Owen P. Leary,Zhusi Zhong,Lulu Bi,Zhicheng Jiao,Yuwei Dai,Kevin Ma,Shanzeh Sayied,Daniel Kargilis,Maliha Imami,Linmei Zhao,Xue Feng,Gerald J Riccardello,Scott Collins,Konstantina Svokos,Abhay Moghekar,Li Yang,Harrison X. Bai,Petra M. Klinge,Jerrold L. Boxerman
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
被引量:1
标识
DOI:10.3174/ajnr.a8372
摘要

ABSTRACT

BACKGROUND AND PURPOSE:

Symptoms of normal pressure hydrocephalus (NPH) are sometimes refractory to shunt placement, with limited ability to predict improvement for individual patients. We evaluated an MRI-based artificial intelligence method to predict post-shunt NPH symptom improvement.

MATERIALS AND METHODS:

NPH patients who underwent magnetic resonance imaging (MRI) prior to shunt placement at a single center (2014–2021) were identified. Twelve-month post-shunt improvement in modified Rankin Scale (mRS), incontinence, gait, and cognition were retrospectively abstracted from clinical documentation. 3D deep residual neural networks were built on skull stripped T2-weighted and fluid attenuated inversion recovery (FLAIR) images. Predictions based on both sequences were fused by additional network layers. Patients from 2014–2019 were used for parameter optimization, while those from 2020–2021 were used for testing. Models were validated on an external validation dataset from a second institution (n=33).

RESULTS:

Of 249 patients, n=201 and n=185 were included in the T2-based and FLAIR-based models according to imaging availability. The combination of T2-weighted and FLAIR sequences offered the best performance in mRS and gait improvement predictions relative to models trained on imaging acquired using only one sequence, with AUROC values of 0.7395 [0.5765–0.9024] for mRS and 0.8816 [0.8030–0.9602] for gait. For urinary incontinence and cognition, combined model performances on predicting outcomes were similar to FLAIR-only performance, with AUROC values of 0.7874 [0.6845–0.8903] and 0.7230 [0.5600–0.8859].

CONCLUSIONS:

Application of a combined algorithm using both T2-weighted and FLAIR sequences offered the best image-based prediction of post-shunt symptom improvement, particularly for gait and overall function in terms of mRS. ABBREVIATIONS: NPH = normal pressure hydrocephalus; iNPH = idiopathic NPH; sNPH = secondary NPH; AI = artificial intelligence; ML = machine learning; CSF = cerebrospinal fluid; AUROC = area under the receiver operating characteristic; FLAIR = fluid attenuated inversion recovery; BMI = body mass index; CCI = Charlson Comorbidity Index; SD = standard deviation; IQR = interquartile range
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
刘一发布了新的文献求助10
2秒前
后来应助YJL采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
skskysky发布了新的文献求助10
4秒前
lizhiqian2024发布了新的文献求助10
4秒前
星辰大海应助欧欧欧导采纳,获得10
4秒前
科研通AI2S应助Zhu XY.采纳,获得10
4秒前
lili完成签到,获得积分10
4秒前
4秒前
请勿继续发布了新的文献求助10
4秒前
俊逸湘发布了新的文献求助10
6秒前
6秒前
李爱国应助显隐采纳,获得10
7秒前
华仔应助Wander_Li采纳,获得10
7秒前
NexusExplorer应助半及夏白采纳,获得30
7秒前
8秒前
Ice完成签到,获得积分10
8秒前
9秒前
HJC发布了新的文献求助10
10秒前
NexusExplorer应助Kirin采纳,获得10
10秒前
11秒前
伊可完成签到 ,获得积分10
11秒前
李健的小迷弟应助SRsora采纳,获得10
11秒前
diyi发布了新的文献求助10
11秒前
11秒前
12秒前
1111完成签到,获得积分20
12秒前
ECUST发布了新的文献求助20
12秒前
田佳峰发布了新的文献求助10
12秒前
李健应助luofeng采纳,获得10
12秒前
万能图书馆应助aaawen采纳,获得10
13秒前
yufeng发布了新的文献求助10
13秒前
ccc完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804665
求助须知:如何正确求助?哪些是违规求助? 3349505
关于积分的说明 10344809
捐赠科研通 3065569
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808727
科研通“疑难数据库(出版商)”最低求助积分说明 764723