Super‐Stretchable and High‐Energy Micro‐Pseudocapacitors Based on MXene Embedded Ag Nanoparticles

假电容器 材料科学 纳米颗粒 纳米技术 储能 纳米线 电压 软机器人 电容感应 超级电容器 电气工程 电化学 物理化学 工程类 功率(物理) 物理 执行机构 化学 量子力学 电极
作者
Zhiqian Cao,YinBo Zhu,Kai Chen,Quan Wang,Yujin Li,Xianjun Xing,Jie Ru,Ling‐Guo Meng,Jie Shu,Netanel Shpigel,Lifeng Chen
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (26) 被引量:60
标识
DOI:10.1002/adma.202401271
摘要

Abstract The advancement of aqueous micro‐supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro‐robotics and sensors. Unfortunately, conventional micro‐supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene‐based compounds has recently been proposed. Apart from their capacitive contributions, these structures can be loaded with redox‐active nanowires which increase their energy density and stabilize their operation voltage. However, introducing rigid nanowires into MXene films typically leads to a significant decline in their mechanical properties, particularly in terms of flexibility. To overcome this issue, super stretchable micro‐pseudocapacitor electrodes composed of MXene nanosheets and in situ reconstructed Ag nanoparticles (Ag‐NP‐MXene) are herein demonstrated, delivering high energy density, stable operation voltage of ≈1 V, and fast charging capabilities. Careful experimental analysis and theoretical simulations of the charging mechanism of the Ag‐NP‐MXene electrodes reveal a dual nature charge storage mechanism involving ad(de)sorption of ions and conversion reaction of Ag nanoparticles. The superior mechanical properties of synthesized films obtained through in situ construction of Ag‐NP‐MXene structure show an ultra stretchability, allowing the devices to provide stable voltage and energy output even at 100% elongation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笠昂发布了新的文献求助10
刚刚
小垃圾10号完成签到,获得积分10
1秒前
浮游应助mysci采纳,获得10
1秒前
闪闪的觅云完成签到,获得积分10
1秒前
沉默芸发布了新的文献求助10
1秒前
科研通AI5应助Muxi采纳,获得10
2秒前
Jackson_lv发布了新的文献求助10
2秒前
JamesPei应助博慧采纳,获得10
2秒前
2秒前
3秒前
wbp31完成签到,获得积分10
3秒前
充电宝应助sky采纳,获得10
4秒前
LIUJC完成签到,获得积分10
4秒前
5秒前
Lee发布了新的文献求助10
5秒前
烤冷面应助dsfsd采纳,获得20
5秒前
浮游应助lizh187采纳,获得10
5秒前
iNk应助宋祝福采纳,获得20
5秒前
6秒前
老唐发布了新的文献求助10
6秒前
6秒前
6秒前
领导范儿应助lanshuitai采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
小仙完成签到,获得积分10
7秒前
还单身的雅琴完成签到,获得积分10
7秒前
wbp31发布了新的文献求助10
7秒前
pzqmoon完成签到,获得积分10
7秒前
罗实完成签到 ,获得积分10
8秒前
8秒前
orixero应助sunsuan采纳,获得10
8秒前
scofield完成签到,获得积分20
9秒前
10秒前
科目三应助1332881954采纳,获得30
10秒前
在水一方应助ardejiang采纳,获得10
10秒前
飘逸访蕊发布了新的文献求助10
11秒前
FashionBoy应助旋风0127采纳,获得10
11秒前
面面完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092