清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Explainable machine learning prediction of edema adverse events in patients treated with tepotinib

医学 协变量 机器学习 临床试验 不利影响 人工智能 内科学 计算机科学
作者
Federico Amato,Rainer Strotmann,Roberto Castello,Rolf Bruns,Vishal Ghori,Andreas Johne,Karin Berghoff,Karthik Venkatakrishnan,Nadia Terranova
出处
期刊:Clinical and Translational Science [Wiley]
卷期号:17 (9) 被引量:1
标识
DOI:10.1111/cts.70010
摘要

Abstract Tepotinib is approved for the treatment of patients with non‐small‐cell lung cancer harboring MET exon 14 skipping alterations. While edema is the most prevalent adverse event (AE) and a known class effect of MET inhibitors including tepotinib, there is still limited understanding about the factors contributing to its occurrence. Herein, we apply machine learning (ML)‐based approaches to predict the likelihood of occurrence of edema in patients undergoing tepotinib treatment, and to identify factors influencing its development over time. Data from 612 patients receiving tepotinib in five Phase I/II studies were modeled with two ML algorithms, Random Forest, and Gradient Boosting Trees, to predict edema AE incidence and severity. Probability calibration was applied to give a realistic estimation of the likelihood of edema AE. Best model was tested on follow‐up data and on data from clinical studies unused while training. Results showed high performances across all the tested settings, with F1 scores up to 0.961 when retraining the model with the most relevant covariates. The use of ML explainability methods identified serum albumin as the most informative longitudinal covariate, and higher age as associated with higher probabilities of more severe edema. The developed methodological framework enables the use of ML algorithms for analyzing clinical safety data and exploiting longitudinal information through various covariate engineering approaches. Probability calibration ensures the accurate estimation of the likelihood of the AE occurrence, while explainability tools can identify factors contributing to model predictions, hence supporting population and individual patient‐level interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知行者完成签到 ,获得积分10
1分钟前
1分钟前
快乐小狗发布了新的文献求助10
1分钟前
桐桐应助快乐小狗采纳,获得10
1分钟前
CherylZhao完成签到,获得积分10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
ZJakariae应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
万能图书馆应助Tiger-Cheng采纳,获得20
2分钟前
3分钟前
bc应助科研通管家采纳,获得30
3分钟前
bc应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
橘子味的北冰洋完成签到 ,获得积分10
4分钟前
幻梦如歌完成签到,获得积分10
4分钟前
幻梦如歌发布了新的文献求助10
4分钟前
Georgechan完成签到,获得积分10
4分钟前
X子千完成签到,获得积分10
4分钟前
柴胡完成签到,获得积分10
4分钟前
田様应助Carlos_Soares采纳,获得10
4分钟前
6分钟前
6分钟前
快乐小狗发布了新的文献求助10
6分钟前
Danish完成签到,获得积分10
6分钟前
领导范儿应助快乐小狗采纳,获得10
6分钟前
小牛完成签到,获得积分10
7分钟前
7分钟前
wangye完成签到 ,获得积分10
7分钟前
bc应助科研通管家采纳,获得200
7分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
9分钟前
9分钟前
滕皓轩完成签到 ,获得积分20
9分钟前
Tiger-Cheng发布了新的文献求助20
9分钟前
实力不允许完成签到 ,获得积分10
9分钟前
9分钟前
咕咕发布了新的文献求助10
9分钟前
9分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
酷波er应助科研通管家采纳,获得10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402318
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728