Style transfer in clothing based on convolutional neural networks

服装 风格(视觉艺术) 卷积神经网络 计算机科学 传输(计算) 人工智能 自然语言处理 艺术 并行计算 历史 视觉艺术 考古
作者
Rijian Su,Shihao Chi,Haoshen Ma,Yuefeng Wang
标识
DOI:10.1117/12.3031116
摘要

The combination of style transfer in the field of deep learning and clothing design has gradually become a focus of interest. Their integration can complete clothing designs and assist designers in their work. However, traditional style transfer has shortcomings such as blurred structural outlines and confused colors. This paper proposes a clothing style transfer model that incorporates structural loss and color loss. The model first converts the color space of the content image, allowing the style to be transferred onto the luminance channel of the content image, eliminating the color interference of the content image. Secondly, the Laplacian operator is introduced for sharpening both the content image and the transferred image. The sum of their variances is then added as structural loss into the total loss function, enhancing the stability of the transferred image. Finally, a linear transformation ensures that the transferred image has the same pixel mean and variance as the style image, and their sum of variances is used as the color loss in the total loss function, reducing the color differences between the transferred and style images. Experiments demonstrate that the improved style transfer model performs better in terms of texture and color than the original model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪歪歪应助科研通管家采纳,获得10
刚刚
迪歪歪应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
bluck2020发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得50
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
李健应助邓怀正采纳,获得10
2秒前
2秒前
dong发布了新的文献求助10
3秒前
共享精神应助小郭采纳,获得10
3秒前
3秒前
3秒前
com完成签到,获得积分10
4秒前
传奇3应助青阳采纳,获得10
4秒前
传奇3应助朱小燕采纳,获得10
5秒前
6秒前
斯文败类应助ellyalex采纳,获得20
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959