清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Data-driven Approach for Turbulence Modeling

雷诺平均Navier-Stokes方程 湍流 Kε湍流模型 湍流模型 雷诺应力方程模型 K-omega湍流模型 计算流体力学 计算机科学 雷诺应力 流量(数学) 直接数值模拟 雷诺数 机械 物理
作者
Yangmo Zhu,Nam Dinh
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.2005.00426
摘要

Data-driven turbulence modeling is a newly emerged research area in thermal hydraulics simulation of nuclear power plant (NPP). The most common CFD method used in NPP thermal hydraulics simulation is Reynolds-averaged Navier-Stokes (RANS) method, which still has acknowledged deficiencies not only in the calculation speed but also in the complexity of choosing turbulence model and parameters for different flow patterns. Data-driven turbulence modeling aims to develop a RANS-based method which not only computationally efficient but also applicable to different flow patterns. To achieve this goal, the first step is to develop an approach to properly perform RANS for selected flow patterns. In this work, a machine learning approach is selected to achieve this goal. The main purpose of this study is to perform a data-driven approach to model turbulence Reynolds stress leveraging the potential of massive direct numerical simulation (DNS) data. The approach is validated by a turbulence flow validation case: a parallel plane quasi-steady state turbulence flow case. The work contains three parts. The first part is database preparation. In this step, turbulence properties (Reynolds stress) are extracted from DNS results, which are considered as "physically correct data". Meanwhile, flow features are extracted from RANS results, which are considered as "data to be corrected". The second part is surrogate model establishment. In this step, a data-driven regression function is trained between flow features and turbulence properties obtained from the previous step. The last part is model validation, which is applying trained data-driven regression function to a test case to validate this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三水完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助20
16秒前
pegasus0802完成签到,获得积分10
17秒前
RED发布了新的文献求助10
17秒前
17秒前
小怪完成签到,获得积分10
19秒前
21秒前
27秒前
lx完成签到,获得积分10
49秒前
GMEd1son完成签到,获得积分10
50秒前
xiaowangwang完成签到 ,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得30
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
橙橙完成签到 ,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
美好灵寒完成签到 ,获得积分10
3分钟前
科研通AI2S应助Jessica采纳,获得10
3分钟前
3分钟前
殷勤的涵梅完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Future完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
George发布了新的文献求助30
5分钟前
melody完成签到 ,获得积分10
6分钟前
荣荣发布了新的文献求助10
6分钟前
Sunny完成签到,获得积分10
6分钟前
荣荣完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567