Targeted Construction of Amorphous MoSx with an Inherent Chain Molecular Structure for Improved Pseudocapacitive Lithium‐Ion Response

材料科学 阳极 无定形固体 锂(药物) X射线光电子能谱 电极 离子 电导率 化学工程 纳米技术 分析化学(期刊) 结晶学 物理化学 化学 有机化学 医学 内分泌学 工程类
作者
Yaoyao Wang,Honghong Fan,Zhiwei Wang,Wan‐Yue Diao,Chao‐Ying Fan,Xing‐Long Wu,Jingping Zhang
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:25 (66): 15173-15181 被引量:5
标识
DOI:10.1002/chem.201903585
摘要

Abstract Owing to low ion/electron conductivity and large volume change, transitional metal dichalcogenides (TMDs) suffer from inferior cycle stability and rate capability when used as the anode of lithium‐ion batteries (LIBs). To overcome these disadvantages, amorphous molybdenum sulfide (MoS x ) nanospheres were prepared and coated with an ultrathin carbon layer through a simple one‐pot reaction. Combining X‐ray photoelectron spectroscopy (XPS) with theoretical calculations, MoS x was confirmed as having a special chain molecular structure with two forms of S bonding (S 2− and S 2 2− ), the optimal adsorption sites of Li + were located at S 2 2− . As a result, the MoS x electrode exhibits superior cycle and rate capacities compared with crystalline 2H‐MoS 2 (e.g., delivering a high capacity of 612.4 mAh g −1 after 500 cycles at 1 A g −1 ). This is mainly attributed to more exposed active S 2 2− sites for Li storage, more Li + transfer pathways for improved ion conductivity, and suppressed electrode structure pulverization of MoS x derived from the inherent chain‐like molecular structure. Quantitative charge storage analysis further demonstrates the improved pseudocapacitive contribution of amorphous MoS x induced by fast reaction kinetics. Moreover, the morphology contrast after cycling demonstrates the dispersion of active materials is more uniform for MoS x than 2H‐MoS 2 , suggesting the MoS x can well accommodate the volume stress of the electrode during discharging. Through regulating the molecular structure, this work provides an effective targeted strategy to overcome the intrinsic issues of TMDs for high‐performance LIBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxhcjdsg发布了新的文献求助10
刚刚
kuang完成签到,获得积分10
1秒前
2秒前
努力的土豆泥完成签到,获得积分10
2秒前
wenwenwang完成签到 ,获得积分10
3秒前
WEIMING完成签到,获得积分10
3秒前
蜗牛fei完成签到,获得积分10
3秒前
田様应助xiaozhang采纳,获得10
4秒前
4秒前
刘倩发布了新的文献求助10
4秒前
共享精神应助跑快点采纳,获得10
5秒前
科研通AI2S应助fake采纳,获得10
5秒前
6秒前
小蘑菇应助互助遵法尚德采纳,获得10
7秒前
少艾完成签到 ,获得积分20
9秒前
UniTTEC9560完成签到,获得积分10
10秒前
bkagyin应助mmyhn采纳,获得10
10秒前
Je11y发布了新的文献求助10
11秒前
小王发布了新的文献求助30
11秒前
11秒前
12秒前
orixero应助互助遵法尚德采纳,获得30
12秒前
fake完成签到,获得积分10
12秒前
13秒前
14秒前
AI完成签到,获得积分10
14秒前
16秒前
努力学习完成签到,获得积分10
16秒前
可爱的函函应助十一玮采纳,获得10
16秒前
阿海的发布了新的文献求助10
16秒前
科研通AI5应助清脆的夏青采纳,获得10
17秒前
跑快点发布了新的文献求助10
18秒前
乐开欣完成签到 ,获得积分10
18秒前
18秒前
深情凡灵完成签到,获得积分10
18秒前
18秒前
wanci应助xlanister采纳,获得10
18秒前
dae发布了新的文献求助50
19秒前
丘比特应助小王采纳,获得10
19秒前
深情凡灵发布了新的文献求助10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215500
求助须知:如何正确求助?哪些是违规求助? 4390616
关于积分的说明 13670382
捐赠科研通 4252539
什么是DOI,文献DOI怎么找? 2333148
邀请新用户注册赠送积分活动 1330741
关于科研通互助平台的介绍 1284568