Insider Threat Detection using Deep Learning: A Review

内部威胁 计算机科学 计算机安全 知情人 深度学习 人工智能 入侵检测系统 任务(项目管理) 异常检测 术语 数据科学 工程类 政治学 系统工程 法学 哲学 语言学
作者
Madhu Raut,Sunita Dhavale,Amarjit Singh,Atul Mehra
标识
DOI:10.1109/iciss49785.2020.9315932
摘要

A plethora of research is available for detecting and mitigating threats that occur across the organization's boundaries. However, Insider Threat Detection has only recently entered the limelight. It turns out to be a daunting task, given that insiders can evade firewalls, Intrusion Detection Systems, and other security mechanisms aimed at protecting the information infrastructure from outside attacks. In addition to this, some insiders having administrative rights to access privileged information and perform operations on it might turn rogue. Their malicious actions could go undetected as their digital footprint might get buried in massive dumps of log data. This survey aims to provide a comprehensive explanation of the problem statement at hand, Insider Threat Detection using Deep Learning. It has been initiated by introducing Insider Threat Detection and related terminology. Deep Learning has been chosen as the preferred approach for solving this problem statement as it has been proven to be better than the conventional Machine Learning algorithms while dealing with complex data originating from varied sources. Here, Deep Learning and Log based Anomaly Detection have been explained. Some datasets available specifically for the research domain of Insider Threat Detection have been brought under one roof. Then, by having a closer look at the CERT Insider Threat Dataset, a brief comparative analysis of the existing Deep Learning solutions for Insider Threat Detection based on this dataset is provided. Also, this work overviews the challenges faced and how they open doors for further research. In order to cater to the readers looking for an industry-oriented approach, this survey explains how a Deep Learning model can be integrated with the Elasticsearch-Logstash-Kibana (ELK) Stack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花生米一粒粒完成签到,获得积分10
刚刚
刚刚
刚刚
大大完成签到,获得积分10
1秒前
所所应助小科采纳,获得10
2秒前
开朗寇发布了新的文献求助10
2秒前
称心寒松发布了新的文献求助10
4秒前
5秒前
甜甜世立发布了新的文献求助10
7秒前
7秒前
田様应助科研论文的狗采纳,获得10
7秒前
翌烨春夏完成签到 ,获得积分10
8秒前
9秒前
12秒前
12秒前
12秒前
000完成签到,获得积分10
14秒前
彼岸完成签到,获得积分20
15秒前
开心灰狼发布了新的文献求助10
15秒前
yuechat发布了新的文献求助10
15秒前
Lucas应助yuhuai采纳,获得10
16秒前
000发布了新的文献求助10
17秒前
我的麦子熟了完成签到,获得积分10
18秒前
灵犀完成签到,获得积分10
19秒前
烟花应助生产队的建设者采纳,获得10
19秒前
Jasper应助彼岸采纳,获得10
21秒前
威尔逊2完成签到,获得积分10
21秒前
22秒前
zpz发布了新的文献求助50
22秒前
Hello应助西瓜草莓火龙果采纳,获得30
23秒前
科研通AI5应助跳跃的浩阑采纳,获得10
24秒前
郭泓嵩完成签到,获得积分10
24秒前
NexusExplorer应助llllllu采纳,获得10
25秒前
TN发布了新的文献求助40
25秒前
lxy完成签到 ,获得积分20
26秒前
26秒前
年年发布了新的文献求助10
26秒前
27秒前
张小婧完成签到,获得积分10
27秒前
28秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822351
求助须知:如何正确求助?哪些是违规求助? 3364752
关于积分的说明 10432580
捐赠科研通 3083554
什么是DOI,文献DOI怎么找? 1696262
邀请新用户注册赠送积分活动 815693
科研通“疑难数据库(出版商)”最低求助积分说明 769252