避碰
避障
障碍物
计算机科学
计算机视觉
人工智能
职位(财务)
立体视觉
控制器(灌溉)
碰撞
控制理论(社会学)
跟踪(教育)
车辆动力学
弹道
机器人
移动机器人
工程类
控制(管理)
航空航天工程
法学
生物
经济
物理
天文
计算机安全
教育学
政治学
心理学
财务
农学
作者
Jiahao Lin,Hai Zhu,Javier Alonso‐Mora
标识
DOI:10.1109/icra40945.2020.9197481
摘要
<p>In this paper, we present an on-board vision-based approach for avoidance of moving obstacles in dynamic environments. Our approach relies on an efficient obstacle detection and tracking algorithm based on depth image pairs, which provides the estimated position, velocity and size of the obstacles. Robust collision avoidance is achieved by formulating a chance-constrained model predictive controller (CC-MPC) to ensure that the collision probability between the micro aerial vehicle (MAV) and each moving obstacle is below a specified threshold. The method takes into account MAV dynamics, state estimation and obstacle sensing uncertainties. The proposed approach is implemented on a quadrotor equipped with a stereo camera and is tested in a variety of environments, showing effective on-line collision avoidance of moving obstacles.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI